

Module handbook

Academic year 2022/2023

State of 16.08.2022

Table of contents

1. Introductory comments1
2. Schedule2
3. Module descriptions – Module compendium5
3.1 Winter term 2022/2023 – first semester7
Energy and sustainable development7
Scientific Framework for REM9
Natural resources and Conversion Technologies11
Climate and energy policy14
3.2 Winter term 2022/2023 – third semester16
Elective Track "Energy Systems Technology"16
Electives "Energy Conversion"24
• Elective Track "Renewable Energy Management and Planning"27
3.3 Summer term 2023 – second semester42
3.3 Summer term 2023 – second semester42 • Energy Systems Operations42
Energy Systems Operations42
 Energy Systems Operations

Module handbook

Master of Science

Renewable Energy Engineering and Management

1. Introductory comments

According to § 4 of the examination regulation of the MSc Renewable Energy Engineering and Management a module handbook lists the module contents. The module handbook refers to the academic year and gives information about the time schedule, type and scope of the module related courses and examinations.

The MSc Renewable Energy Engineering and Management is a two-year course. In the first part the time schedule for the students in their respective semester (first or third semester, second or fourth semester) is given. In the second part the module descriptions (listed accordingly to the time schedule given in the first part) inform about the contents and course prerequisites of the individual modules.

The module handbook is available on the website of the MSc Renewable Energy Engineering and Management (www.rem.uni-freiburg.de). Thus students have access to the module handbook before and during their studies.

2. Schedule

										Win	ter t	erm 20	22/23	8 First	Seme	ster										
	0	ctob	er		No	ovem	ber			Decembe		r		J	anuar	'Y			Feb	ruary			Ma	irch		
cw			43	44	45	46	47	48	49	50	51	52	53	01	02	03	04	05	06	07	08	09	10	11	12	cw
	14.:	10.					10 - 16.	12.		- 7.01.		09.01 - 27.01. 30.01 17.02.			20.0210.03.											
						Modu										Moc	lule				Modul	е				
Sem.)	ary day			Energy	/ & Su		ble Dev	velopm	ient			Christmas Break		Natu		source: Techno			ersion	Clima	ate & E Polic <u>i</u>	Energy y				Sem.)
REM (1 st	Introductionary			Pauliuk Module Scientific Framework for REM																	REM (1 st					
	ln					von l	Detten									Paul	iuk			F	Ragwit	z				

										S	umm	ner te	rm 20	23							 	
			A	oril			May	/		June					July				Au	gust		
cw		1	6 17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34		cw
			17.04	05.05.	08.0)5 26.	.05.	29.05. -02.06	05.06.	- 23.06.		26	5.06 1	4.07.	17	7.07 04	1.08.					
l (2 nd Sem.)			Mod Ene Syste Opera	rgy ems	E	Modul oducti Busine Manag ment	on to ss e-	Pentecoast Break	Rese and Su	Module earch S I Ethics ustainal velopm	Skills s for ble	Globa Tran Lo	Energ Elect al Sust sform cal Co aderst Soc	ive ower hermal gy 1 ive tainabilit ations in ontexts		Modu Elect Bioene Elect /ind en	ive rgy ive		Modi		M (2 nd Sem.)	
REM			Weid	ich	vo	on Dett	en		Ze	ngerlin	g		Weile		F	aczkow		1	Pauli	uk		REM
												z	Platzo enger			Schind	ller					
													Scha	ız								
						Energy	in Build	dings: en	ergy der	mand an	d build	ding phy	∕sics – ŀ	lenning (whole	semeste	r)					

Colour code	Cross sectional topic "Energy Conversion" 10-20 ECTS
Colour code	Elective Track Renewable Energy Management and Planning (REPM) 15-25 ECTS
Colour code	Elective Track Energy Systems Technology (EST) 15-25 ECTS

									W	inter te	erm 20)22/2	23 Th	ird S	emes	ster									
	Oct	tobe	er		No	oveml	ber		D	ecemb	er			Jai	nuary	,		F	ebrua	iry		March			
cw			42	43	44	45	46 47	48	49	50	51	52	01	02	03	04	05	06	07	08	09	10	11	12	cw
			Optim Comp Energ Smart Mode	lex Ne y Syst Grids Iling a	n and twork tem M	Elec Foreca s odeling	11 25.11. Modules Stive Tracks asting for E g with Pyth dentification mponents +	El nergy S on	-	es Fracks s	supply				01–27.0 Modul ctive T	es Tracks We Sc We Wi D	Ν)1. – 17 Module ctive Tr	es			- 10.03. dule • Tracks			
rd Sem.)			Energ	rical o ly Stor ternsh	age	zation	Phote	ovoltai	cs 1*							D Sch Photov)iehl nossig voltaics nal Eng	s 2*	**				-		rd Sem.)
REM (3 rd						Proj	naging RE ects – Case Studies	En	andsca Natur Protecti Landus Conflic vironm Econom	e on, se cts iental			Christmas Break	Ma Env aı Tra Te Ass	ife Cy anager vironm nd Ene nsition echnol sessm ory/Pr	ment nental ergy n Law logy	Ass the Asp Energ	ulation essme Syste ects o gy Trai	ent of emic	ר וו	Γhesis ntrodu Sustai	l Ecology Projekt action to nability sitions			REM (3 rd
			F	Pauliuk	ſ		enning* pert-Winkel		Hennin Koch aumgär	1			5		lennin Pauliu engerli Späth	k ing		latzer* uknec			Pau Baukr				

3. Module descriptions

- 3.1. Winter term 2022/2023 first semester
 - Energy and Sustainable Development
 - Scientific Framework for REM
 - Natural resources and Conversion Technologies
 - Climate and Energy Policy
- 3.2. Winter term 2022/23 third semester
 - Internship
 - Elective Track "Energy Systems Technology"
 - Optimization and Forecasting for Energy Systems
 - Complex Networks
 - Energy System Modeling with Python
 - Smart Grids
 - Modelling and System Identification
 - Energy in Buildings: components and systems for energy supply
 - Numerical optimization
 - Energy Storage
 - Elective Track "Renewable Energy Planning and Management"
 - Managing RE Projects Case Studies
 - ***** Landscape, Nature Protection, Landuse conflicts
 - Life Cycle Management
 - Environmental and Energy Transition Law
 - Technology Assessment Theory and Practice
 - Regulation and Assessment of the Systemic Aspects of the Energy Transition

- Introduction to Sustainability Transitions
- Industrial Ecology Thesis Projekt
- Cross sectional topic "Energy Conversion"
 - Photovoltaics 1
 - Photovoltaics 2
 - Solar Thermal Energy 2
- 3.3. Summer term 2023 second semester
 - Energy Systems Operations
 - Introduction to Business Management
 - Society and Economy
 - Research Skills and Ethics of Sustainable Development
 - Elective Hydropower
 - Elective Solar Thermal Energy 1
 - Elective Global Sustainability Transformations in Local Contexts
 - Elective Leadership and Social Entrepreurship
 - Elective Bioenergy
 - Elective Wind Energy
 - Energy in Buildings: energy demand and building physics
 - Internship

Course			
M.Sc. Renewable Energy E	ngineering and Managemer	nt	
Availability to other courses			Instruction Language
			English
Module No.	Module name		Semester/return
93110	Energy and sustainabl	e development	1 st Sem. / annual
Workload/presence	Prerequisite module(s)	Follow-up	No. of participants
5 ECTS-P (150h/60h)		module(s)	Max. 75
Teaching form	Examination form	Start date	Location
Lectures, exercises, group work	Term paper (50%), written assignment (50%)	17.10.2022	Tba.
Module coordinator: Prof. Dr.	Stefan Pauliuk (<u>stefan.pauliuk</u>	@indecol.uni-freiburg	<u>1.de</u>)
Additional teaching staff			
Prof. Dr. Ernst Ulrich von Weiz	säcker, Johan Velez		
Syllabus			

The module is divided into three parts.

In the first part the students become familiar with the state of the art of the energy transition and climate change mitigation as major aspect of sustainable development. Next to a detailed overview of current and expected future renewable energy supply, energy productivity is discussed in detail. Examples of large productivity gains will be shown from a wide range of industrial sectors, transport, buildings, and agriculture. Also, current and future policy options to steer technologies and investments towards a more renewable energy supply will be discussed (Main responsibility: Prof. Dr. Ernst Ulrich von Weizsäcker)

In the second part we study renewable energy from a systems perspective. We present the systems approach to human-environment interactions and introduce the central interdisciplinary concepts of system science. These concepts include socio-ecological systems and the separation of their biophysical and social aspects, boundary objects to describe objects and concepts across disciplines, socioeconomic metabolism and the biophysical structures of society, and industrial ecology and the circular economy. We briefly describe the metabolism of historic societies and discuss its constraints. We then present two main systems approaches to quantify and assess material and energy flows as well as costs associated with renewable energy installations: Material flow analysis and life cycle sustainability assessment. (Main responsibility: Prof. Stefan Pauliuk)

In the third and last part of the course, students are required to select one of the many aspects of and options related to renewable energy supply and to prepare a short scientific piece of not more than 2000 words and max. 3 figures/tables on their selected topic. This homework will be graded. (Main responsibility: students)

The module is interactive and encourages strong student participation. Lectures, offering a detailed introduction, are complemented by exercises and autonomous group work and panel discussions. On the basis of the acquired knowledge, students prepare concise written summaries of the state of the art of renewable energy technology development and deployment as well as the system-wide consequences and the ethical background of the energy transition.

Learning goals and qualifications

- Detailed knowledge about the state of the art and scientific methods for assessment of renewable energy conversion and use, energy efficiency, energy policy, resource productivity, emerging technologies, and new political frameworks.
- Basic knowledge of quantitative systems theory and quantitative analysis of human-environment systems, basics of material flow analysis and life cycle sustainability assessment
- Soft skills: discussion and scientific writing skills, capacity for team work

Recommended reading

Von Weizsäcker, E., Hargroves K., Smith M.H., Desha C.: "Factor Five" (Earthscan, London, 2009)

Hertwich et al. (2015). Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. PNAS 112(20), 6277-6282.

Note: All reading is provided as pdf on the University's online learning platform ILIAS.

Course prerequisites

Basic knowledge about energy conversion, use and efficiency as well as renewable energy conversion technologies.

M.Sc. Renewable Ener	gy Engineering and Man	agement	
Availability to other cou			Instruction Language
			English
Module No.	Module name		Semester/return
93950	Scientific Framewor	rk for REM	1 st Sem. / annual
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants
10 ECTS (300h/100h)			max. 75
Teaching form	Examination form	Start date	Location
Lectures, tutorials	Written assignment (pass or fail)	19.10.2022	tba
Module coordinator: Dr.	Roderich von Detten (r.v.d	etten@ife.uni-freiburg.de)	1
Additional teaching staf	f: Christoph Bohnert, Dr. O	swald Prucker, Jun-Prof. C	Cathrin Zengerling
Syllabus			
and internationality natur subjects relevant for this engineering, politics, eco	e of the M.Sc. REM course course. At the beginning	rse by providing fundament , the current knowledge in will be tested and recomm	dge due to the interdisciplinary ntal knowledge about diverse n physics, chemistry, biology, nendations will be given to the their knowledge gaps

1. Introduction in Physics, Chemistry, Biology and Engineering

In this module, the basics of mechanics, thermodynamics, electro statics and dynamics, as well as optics are discussed in a physics class. An overview over the chemistry (e.g. assembly of elements, chemical bindings, chemical reactions, organic molecules, polymers) and biology (e.g. photosynthesis, cells in a perspective of biomass) is given. An engineering class provides the students with the fundamental knowledge on electricity (e.g. basics of electronics, electric components, Kirchhoff's laws, diodes, three-phase current)

2.Introduction into Politics, Economics, Business and Law

The economics part of the course presents an overview of basic concepts and methods of microeconomics. Main topics include fundamental principles of economics, consumer theory, producer theory, and market equilibrium and efficiency.

Basics of business economics: Financial Management, Accounting, Balance sheet, performance indicators (liquidity, profitability, financial health etc.), Strategic Aspects of Management; Decision Making in organizations (teaching form: cardboard business game)

The law module introduces into fundamentals of law and state theory from an international, multi-level governance and comparative perspective. It presents basics of the legal framework relevant for renewable energies and makes students familiar with key legal primary sources in this context.

Learning goals and qualifications

1. Introduction in Physics, Chemistry, Biology, and Engineering

The students acquire basic knowledge in physics and engineering to provide the required prerequisites for advanced technology classes. The students understand the concepts of thermodynamics, mechanics, electro statics and dynamics, and optics as well as the electric engineering, which consists of electrical components, electrical circuits and conduction. The students learn fundamental concepts of chemistry and biology providing a basis for understanding biomass and conversion into bioenergy. This includes the classifications and properties of basic elements of the periodic table and survey the different bonding mechanisms and resulting chemical species, the fundamentals of chemical reactions including stoichiometry with a specific emphasis on reactions relevant to biomass such as acid / base reactions.

2. Introduction into Politics, Economics, Business and Law

Students acquire adequate understanding of microeconomic theory and they are able to apply this to practical contexts. The economics part builds on the basic concepts in consumer and producer theory. They understand the principles of the legal framework of land use as well as the role of organizations as bottlenecks for the implementation of sustainability strategies. Students understand the rational of social and economic sciences (methodology, methods). They are able to adopt theoretical concepts to practical questions and use them as a tool to understand the formulation and implementation of energy policy.

Students gain an overview of fundamentals of law and state theory, energy and planning law and learn how this legal framework shapes the renewable energy market.

Recommended reading

Tipler, Mosca: Physics for Scientists and Engineers; Freeman, 6th edition, 2007 (Part I, II, III, IV, V) Boylestad, Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall, 7th edition Orrrest M. Mims, Getting Started in Electronics, 12th edition (1994) – *soft copy for the students will be provided*.

Economy & Management: Selected chapters from : Cole, G. a. 2003. Management. Theory and Practice. 6th edition. Cengage Learning (UK) & Parkin, M., Powell, M. and Matthews, K. 2003 Economics, 5th Edition, Harlow: Addison-Wesley; during the module materials will be made available via the learning platform ILIAS

Course prerequisites

-

Course M.Sc. Renewable Energy	/ Engineering and Man	agement		
Availability to other cours		Instruction Language English		
Module No. 93951	Module name Natural Resources Technologies	s and Conversion	Semester/return 1 st Sem. / annual	
Workload/presence 10 ECTS (300 h/100 h)	Prerequisite module(s) Scientific Framework for REM	Follow-up module(s) Generation and Distribution of Energy	No. of participants Max. 75	
Teaching form Lectures, Exercises, Seminar, lab experiments	Examination form Written assignment	Start date 09.01.2023	Location tba	

Module coordinator: Prof. Dr. Stefan Pauliuk (stefan.pauliuk@indecol.uni-freiburg.de)

Additional teaching staff

Prof. Dr. Andreas Christen (solar radiation), Prof. Dr. Werner Platzer (solar thermal, solar power), Dr. Ralf Preu (photovoltaics), Prof. Dr. Markus Weiler (water & hydropower), Dr. Sebastian Paczkowski (biomass & bioenergy), Prof. Dr. Dirk Schindler (wind)

Syllabus

This module gives the students an overview and the fundamental knowledge of different renewable energy sources and their potentials as well as basics of the underlying conversion technologies.

1. Solar Radiation, Photovoltaics & Solar heat (2 weeks)

<u>Solar radiation:</u> Meteorological aspects of the utilization of solar radiation as a renewable energy source: processes, phenomena, solar radiation spectrum, spatial and temporal patterns of radiative fluxes in the atmosphere and at the earth's surface. Calculation of solar irradiation on inclined collectors; methods for determining diffuse and direct solar radiation

<u>Photovoltaics</u>: Basics of solar cell principles and characterisation silicon photovoltaics value chain with focus on cell technology, overview over other photovoltaic technologies, simple design of photovoltaic systems, and calculation of energy gain.

<u>Solar Thermal Energy</u>: Basics of solar thermal energy conversion are given, which includes: flat plate and vacuum tube solar collector design, black and selective absorbers, basics of optical gains and calculation of conductive, radiative and convective heat transfer in solar collectors and piping, solar thermal system concepts for solar domestic hot water and solar assisted heating, hot water storage types. System concepts are addressed, such as forced circulation and natural circulations systems, with low and high flow. Overview on solar concentrating collectors is given. High temperature applications are addressed, such as solar process heat and concentrated solar thermal power (CSP). Eventually, simple economics and system comparison with conventional alternatives are discussed.

2. Wind & Wind Energy (1 week)

Meteorological aspects of the utilization of wind as a renewable energy source are discussed, such as processes, phenomena, spatial and temporal patterns of kinetic energy and airflow in the atmospheric boundary layer.

Furthermore, this part of the module gives an applied overview about wind technology, focusing on performance and feasibility. Main topics are: the evolution of the wind turbine (capacity, components) and the role of electric grids. Additionally, key factors of wind-project development will be analysed: construction pre-requisites, steps, methods and costs. Wind technology perspectives around the world will be part of the module as well.

3. Water & Hydropower (1 week)

This part of the module gives a broad overview about the water cycle and hydrological processes as well as the large number of different technologies and applications for producing hydropower and hydroelectricity. The state of hydropower worldwide and in certain countries will be addressed and calculations for hydropower and hydroelectricity output will be done. Further topics are: hydropower and environment, hydropower and climate change, river ecology scientific discussion on dams), aspects of hydropower economics, sustainable management of hydropower and case studies around the world.

4. Biomass & Bioenergy (1 week)

This part of the module provides general knowledge on biomass abundance and management, the chemical composition of important biomass resources, and all major biomass conversion technologies. The following technologies will be introduced:

- thermo-chemical
- physico-chemical
- bio-chemical

The technologies are linked to their respective raw materials as well as to limitations and chances for bioenergy considering aspects of both management and technology. Class assignments allow students to evaluate bioenergy potential of selected countries considering the three sources of raw material (e.g. forestry, agriculture, waste) and related conversion processes.

Learning goals and qualifications

The diversity of renewable energy harvesting is mediated to the students. They understand the potentials with respect to the spatial availability, the general technologies, the sustainability of renewable energy conversion at given conditions, challenges and risks, as well as solution strategies of many different kinds of renewable energy sources. The students learned the basic concepts of the different conversion technologies and know how the different renewable energy sources can be utilized in order to produce electric power, heat and/or fuel.

1. Solar Radiation, Photovoltaics & Solar heat (2 weeks)

<u>Solar radiation:</u> Comprehension of radiative processes in the atmosphere and at the Earth surface, application of knowledge about solar radiation at the earth's surface within the context of site assessment, analysis of methods used to quantify solar radiation incident at the earth's surface.

<u>Photovoltaics</u>: The students will get a brief introduction into the history and application of photovoltaics. They will be taught the working principles of photovoltaics, including the basic mechanisms of the generation of carriers by photon absorption. The focus will be on standard semi-conductor based photovoltaics. They will learn how a solar cell can be described by its characteristic current-voltage-dependence. They will learn about the main mechanisms, which limit the maximum efficiency of a photovoltaic device. They will gain a rough overview on the different technologies how to manufacture photovoltaic modules as well as the most important characterization methods. They will learn a basic approach how to derive the energy yield of a PV system. Finally they will get a first insight into cost and environmental issues.

<u>Solar Heat</u>: The students will understand the working principles of solar collector systems and the main factors of the solar energy utilization. They will learn to estimate approximately the solar gains of solar thermal systems. The main factors influencing the output of system can be judged qualitatively. Within exercises optical solar gains and heat losses as part of the overall energy balance of a collector will be calculated. Based on that quantitative simple estimations of collector performance will be practised. They will understand the main features and the basic differences between concentrating and non-concentrating systems.

2. Wind & Wind Energy (1 week)

Comprehension of airflow patterns in the atmospheric boundary layer, application of knowledge about nearsurface airflow within the context of site assessment, analysis of methods used to quantify the wind resource near the ground

The students will be able to understand the role of wind energy from the management perspective and to deduce future scenarios for this technology according to the natural conditions and legal framework of each

country/region.

3. Water & Hydropower (1 week)

The students will get general and specific knowledge about the water cycle and hydrological processes, principles, technologies, applications, problems and solutions regarding hydropower, ranging from micro to large systems, and the use of hydropower optimized towards sustainability. The students will be able to calculate the output and economics of hydropower. They will be able to compare, evaluate and manage different aspects of hydropower with the goal of sustainability.

4. Biomass & Bioenergy (1 week)

Within this part of the module, the students will get an understanding on the principals of biomass conversion processes and the related requirements on biomass. Based on presented advantages and disadvantages of different conversion technologies, the students will be able to compare and evaluate these technologies. This basic knowledge on the conversion techniques will enable them to evaluate the different technologies with regard to production of power, heat or fuel. In the frame of the homework the students will apply this knowledge.

Recommended reading

- Duffie-Beckman: Solar Engineering of Thermal Processes.
- Martin Green: Solar Cells: Operating Principles, Technology, and System Applications.
- I. Stober and K. Bucher, 2009: Geothermal Energy, Geothermal Exploration. Springer Verlag, Heidelberg.
- Additional relevant literature will be presented in the module

Course prerequisites

Content of the module "Scientific Framework for REM"

Course					
M.Sc. Renewable Ener	gy Engineering and Man	agement			
Availability to other cou	rses		Instruction Language		
			English		
Module No.	Module name		Semester/return		
93140	Climate and Energy	Policy	1 st semester / annual		
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants		
5 ECTS-P (150h/60h)			Max. 75		
Teaching form	Examination form	Start date	Location		
Lectures + group work assignments	Written assignment, group work presentation	20.02.2023	tba		
Module coordinators: P	rof. Dr. Mario Ragwitz				

Additional teaching staff: Dr. Sibylle Braungardt, Dr. Veit Bürger, Dr. Vicki Duscha

Syllabus

The prevailing focus of the module is on the governance of climate and energy issues and corresponding policies at different levels (international, national, regional), as well as on their interrelation to other policy fields. After a short introduction to the basics of political science, students will be confronted with the wide range of climate and energy issues as well as the resulting conflicts and their role in the international efforts to mitigate climate change. Targets of climate and energy policy will be presented as well as the broad range of related instruments, policy processes, involved stakeholders and their interests.

In particular the module will cover the fundamentals of:

- international climate policy, including different concepts of effort sharing and the role of different countries / world regions in international negotiations of mitigation targets,
- energy policy, incl. instruments targeted at security of supply, energy efficiency, environmental sustainability,
- > electricity markets and the impact of energy policy on these markets,
- renewable energy policy including basic economic characterization of renewable energies in energy modelling,
- the energy transition in Germany.

The module is designed in a very interactive manner and encourages strong participation of the students. After detailed introductions and presentations to the different topics they will be asked to elaborate issues and present the results in a self-organized manner (group work), i.e. by

- conducting country case studies,
- preparation of short presentations on case studies conducted.

Furthermore, various guest speakers and experts from different fields and institutions will be invited to provide expert views and insights on the respective topics.

Learning goals and qualifications

The main goal of this interdisciplinary module is to provide in-depth knowledge and insights into concepts of energy policy and the international climate regime; the focus of the module is on the connection to strongly related issues and processes, e.g., national and international climate, energy and land use policies. Different scientific disciplines are merged, with the objective to foster an understanding of complex multi-level political issues. This includes

- the presentation of different types of instruments and the role of the policy mix
- > the role of different actors and institutional aspects
- > different governance levels of energy and climate policy (local, regional, national, international)
- > steps in the policy process (design, implementation, monitoring, evaluation, etc)
- > role of scenarios (normative, explorative, projective), dealing with uncertainties
- cost aspects (system analytic, distributional effects, external costs)

Development of the following skills

- ability to analyze complex contextual knowledge
- interdisciplinary work
- ability to evaluate policy programmes and instruments
- rhetoric, discussion and presentation skills
- team work
- fostering of problem solving competences

Recommended reading

Metz, B. (2010): Controlling climate change. Cambridge university press. 350 p

http://www.iea.org/policiesandmeasures/climatechange/

http://www.worldenergyoutlook.org/

http://unfccc.int/resource/process/guideprocess-p.pdf

http://www.uneptie.org/energy/publications/pdfs/EmissionsTrading-Feb03.pdf

http://www.bmu.de/files/pdfs/allgemein/application/pdf/reccs_endbericht_kurz_en.pdf

http://www.grida.no/publications/rr/natural-fix/ebook.aspx

http://www.bmu.de/files/english/renewable_energy/downloads/application/pdf/broschuere_ee_zahlen_en.pdf

Course prerequisites

- Teaching context of module "Energy and sustainable development"
- Basic knowledge regarding environmental issues associated to climate change

Course			
M.Sc. Renewable Ene	rgy Engineering and Man	agement	
Availability to other co	urses		Instruction Language
			English
Module No.	Module name		Semester/return
5572	Optimization and Fo Energy Systems	precasting for	3 rd Sem. / annual
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants
6 ECTS-P (150h/60h)	Elective I		
Teaching form	Examination form	Start date	Location
Lectures, exercises	Written exam	17.10.2022	t.b.a.
Modulo coordinator: P	rof Dr. Anko Woidlich		

Module coordinator: Prof. Dr. Anke Weidlich

Additional teaching staff:

Syllabus

Optimization and forecasting are very relevant tasks in many domains of energy management and energy economics. The course will cover some of the most prominent optimization and modeling problems in the energy domain, and provides methods for solving such problems. The content includes the following topics:

- Optimization problems in energy economics (e. g. unit commitment, resource scheduling)
- Linear and mixed-integer linear programming
- Dynamic programming
- Multi-criteria decision analysis
- Multiple linear regression
- Time series-based forecasting

The theoretical content will be taught through lectures, including many application examples from energy practice and from academia. There will be in-class exercises, some of which are carried out with standard software tools. Students will prepare a homework that aims at replicating a study using one of the optimization or forecasting methods discussed in the lecture.

Learning goals and qualifications

The students have an overview of different optimization problems in the energy sector and can choose an appropriate method for problem solving. They understand the mathematical background of linear programming, mixed-integer linear programming and other techniques that are widely applied in the energy economy. They are able to formulate mathematical models (objective functions, constraints) and are able to apply optimization methods with the help of computational tools. The students understand the background of different forecasting methods and can carry out forecasts based on time series and multiple linear regression. They can solve the problems with a computer tool. Students are able to formulate their own model for addressing a research challenge, and carry out simple analyses to draw conclusions from model results.

Recommended reading (*available at www.ub.uni-freiburg.de)

- Suhl, L., Mellouli, T.: Optimierungssysteme : Modelle, Verfahren, Software, Anwendungen. 2nd edition, Berlin : Springer, 2009.
- Poler, R., J. Mula, M. Díaz-Madronero: Operations Research Problems: Statements and Solutions, Springer, Berlin / Heidelberg, 2014.
- Williams, H. P.: Model Building in Mathematical Programming, 5th Edition, John Wiley & Sons, 2013.

Course prerequisites

None.

SSE	ses		Instruction Language			
			English			
Module No.	Module name		Semester/return			
5559	Complex Networ	ks	3 rd Sem. / annual			
Workload/presence 6 ECTS (180 h/70 h)	Prerequisite module(s)	Follow-up module(s) Elective II Energy Efficiency	No. of participants			
Teaching form Lecture with integrated exercises	Examination form Written exam	Start date 17.10.2022	Location Uni Freiburg			
Module coordinator: Dr. Mirko Schäfer Additional teaching staff						
 transport, contagio network synchroniz network aspects of 	f the electricity system					
large-scale renewamultiscale infrastru						
 multiscale infrastru Learning goals and quali After the completion of the describe how completion of the calculate various n compare the struct describe and explation implement and anaresults, visualise n communicate and 	fications fications course the student is ex plex systems can be rep neasures for a given net cure of different real work ain network models cover alyse network models in etworks discuss the methods and	resented as networks work d networks red in the course the programming language	Python, import data, plot nt research papers from the			
 multiscale infrastru Learning goals and quali After the completion of the describe how completion of the calculate various n compare the struct describe and expla implement and ana results, visualise n 	fications fications course the student is ex plex systems can be rep neasures for a given net cure of different real work ain network models cover alyse network models in etworks discuss the methods and	resented as networks work d networks red in the course the programming language				

M.Sc. Renewable Energy Engineering and Management Availability to other courses Module No. Module name	Instruction Language
 Module No. Module name	
	English
	English
	Semester/return
6002 Energy System Modeling with Py	thon 3 rd Sem. / annual
Workload/presence 6 ECTS-P (180h: 45h class, 60h preparation, 75h project) / 4 computer 	ule(s) No. of participants 20
Teaching form Examination form Start date	Location
Computer lab and lecture Project and presentation* 17.10.2022	INATECH
Module coordinators: Prof. Dr. Anke Weidlich	
Additional teaching staff: Jan-Frederick Unnewehr, Ramiz Qussous	3
 report. They present their project in the class. Syllabus General introduction to Python, integrated development environment Fundamentals (data types, expressions, conditional execution, iterat Algorithms (flowcharts, pseudocode, complexity and runtime estimat Modelling techniques and application examples from energy systems order models, simulations, and others) Relevant data sources for the energy sector Data evaluation (data import and export, plotting results) Incl. mandatory implementation assignments 	ions, functions, files, matrix operations) ion)
Learning goals and qualifications	
The students	
Can apply basic techniques for solving mathematical problems with I	Python
 Understand engineering problems described in flowcharts, and can t computer program 	ranslate flowchart descriptions into a
Can apply Python to solving mathematical problems in different scient sustainability domain	ntific fields, especially in the energy and
 Can analyse energy system models implemented in Python 	
 Can create an appropriate model for approaching a research question Python 	on in the energy field and implement it in
Recommended reading	
 Literature will be announced in the lecture Starting book: A. Sweigart, Automate the Boring Stuff with Python: P Beginners, No Starch Press (2015) 	Practical Programming for Total
Course prerequisites (recommended)	
Energy System Operations	

	ergy Engineering and Ma	inagement		
Availability to other courses			Instruction Language English	
97001 Smart Grids		3 rd Sem. / annual		
Workload/presence	Prerequisite	Follow-up module(s)	No. of participants	
5 ECTS (150 h/60 h)	module(s)		25	
Teaching form	Examination form	Start date	Location	
Lectures, Exercises, Seminar, lab experimen	Written exam ts	21.10.2022	University of Freiburg; Fraunhofer ISE	
Module coordinator:				
Prof. Dr. Christof Wittwe	r (christof.wittwer@ise.frau	inhofer.de)		
Additional teaching sta	aff	·		
•	smann; Dr. Robert Kohrs,	NN		
Syllabus	,			
2. Distributed and cent 2.1. Transformation	: sankey; efficiency; duration ralized generation into renewable energy sys			
 2.3. Components; p 2.4. Grid integration 2.5. Economics: libe 2.6. Demand Response 2.7. Control and condition 3. System theory 3.1. System modeling 3.2. Linear and different 3.3. Thermal-electring 3.4. Controls and O 4. Grid theory 4.1. DC and AC Cirr 4.2. Transient and set 	distribution and transmissic ower plants; storage, loads i; flexibility; cross energy m eralized energy market; grid once, micro grids mmunication system: smart ng and simulation: application erential equations: c energy system simulation ptimization of grid integrate cuit calculation; stationary power flow i: reactive and active power	on grid s lanagement d operation t grid architecture models ion domains h: examples ed energy systems		
 2.3. Components; p 2.4. Grid integration 2.5. Economics: libe 2.6. Demand Response 2.7. Control and conditional conditions 3. System theory 3.1. System modeling 3.2. Linear and different and different and different and different and different and theory 3.4. Controls and O 4. Grid theory 4.1. DC and AC Cirr 4.2. Transient and s 4.3. Grid integration 	distribution and transmission ower plants; storage, loads i; flexibility; cross energy me eralized energy market; grid once, micro grids mmunication system: smart ing and simulation: application erential equations: c energy system simulation ptimization of grid integrate cuit calculation; stationary power flow i: reactive and active power alifications	on grid s lanagement d operation t grid architecture models ion domains n: examples ed energy systems	ms; fundamental aspects of	
 2.3. Components; p 2.4. Grid integration 2.5. Economics: libe 2.6. Demand Respondent 2.7. Control and conditional conditions 3. System theory 3.1. System modeling 3.2. Linear and different 3.3. Thermal-electring 3.4. Controls and O 4. Grid theory 4.1. DC and AC Cirr 4.2. Transient and set and set and integration Learning goals and que students will learn to us power and energy definition 	distribution and transmissic ower plants; storage, loads i; flexibility; cross energy m eralized energy market; grid once, micro grids mmunication system: smart ng and simulation: application rential equations: c energy system simulation ptimization of grid integrate cuit calculation; stationary power flow i: reactive and active power alifications e the basics of designing g tion, overview on plant and	on grid s lanagement d operation t grid architecture models ion domains n: examples ed energy systems <u>r flow contol</u> rid integrated energy system	alculation and simulation of	
 2.3. Components; p 2.4. Grid integration 2.5. Economics: libe 2.6. Demand Respondent 2.7. Control and conditional conditions 3. System theory 3.1. System modeling 3.2. Linear and different 3.3. Thermal-electring 3.4. Controls and O 4. Grid theory 4.1. DC and AC Cirr 4.2. Transient and set and set and integration Learning goals and que students will learn to us power and energy definition 	distribution and transmissic ower plants; storage, loads i; flexibility; cross energy m eralized energy market; grid once, micro grids mmunication system: smart ng and simulation: application erential equations: c energy system simulation ptimization of grid integrate cuit calculation; stationary power flow <u>i: reactive and active power</u> alifications e the basics of designing g tion, overview on plant and nental aspects of power flow	on grid s lanagement d operation t grid architecture models ion domains n: examples ed energy systems <u>r flow contol</u> rid integrated energy syster I smart grid technologies, ca	alculation and simulation of	

Availability to other courses			Instruction Language	
			English	
Module No.	Module name		Semester/return	
2080	Modelling and System Identification		3 rd Sem. / annual	
Workload/presence 6 ECTS-P (180h: 64h class, 116h self-study) / 3 lectures + 1 exercise	Prerequisite module(s) 	Follow-up module(s) 	No. of participants	
Teaching form	Examination form	Start date	Location	
Lecture and exercises	Written or oral examination	17.10.2022	IMTEK; Lehrstuhl Systemtheorie	
Module coordinators: P	rof. Dr. M. Diehl			
Additional teaching stat	ff.			
Additional teaching sta				
Syllabus Aim of the module is to en behaviour of dynamic sys data in form of time series	nable the students to create stems. In particular, student	s shall become able to us	help to describe and predict th e input-output measurement ess the validity and accuracy o	
Syllabus Aim of the module is to en behaviour of dynamic sys data in form of time series the obtained models. Learning goals and qua Linear and Nonlinear Lea Recursive Estimation, Dy	nable the students to create stems. In particular, student s to identify unknown system lifications st Squares, Maximum Like namic System Model Class	s shall become able to us m parameters and to asse lihood and Bayesian Estir ses (Linear and Nonlinear	e input-output measurement ess the validity and accuracy o nation, Cramer-Rao-Inequality Continuous and Discrete Tim	
Syllabus Aim of the module is to en behaviour of dynamic sys data in form of time series the obtained models. Learning goals and qua Linear and Nonlinear Lea Recursive Estimation, Dy State Space and Input Ou several case studies. The	nable the students to create stems. In particular, student s to identify unknown system lifications st Squares, Maximum Like namic System Model Class utput, White Box and Black	s shall become able to us m parameters and to asse lihood and Bayesian Estir ses (Linear and Nonlinear, Box Models), Application	e input-output measurement	
Syllabus Aim of the module is to en behaviour of dynamic sys data in form of time series the obtained models. Learning goals and qua Linear and Nonlinear Lea Recursive Estimation, Dy State Space and Input Ou several case studies. The	nable the students to create stems. In particular, student s to identify unknown system lifications st Squares, Maximum Like namic System Model Class utput, White Box and Black e lecture course will also rev	s shall become able to us m parameters and to asse lihood and Bayesian Estir ses (Linear and Nonlinear, Box Models), Application	e input-output measurement ess the validity and accuracy o nation, Cramer-Rao-Inequality , Continuous and Discrete Tim of identification methods to	
Syllabus Aim of the module is to en behaviour of dynamic sys data in form of time series the obtained models. Learning goals and qua Linear and Nonlinear Lea Recursive Estimation, Dy State Space and Input Ou several case studies. The Optimization, and System Recommended reading • Lecture manuscript	nable the students to create stems. In particular, student s to identify unknown system lifications st Squares, Maximum Like namic System Model Class utput, White Box and Black e lecture course will also rev ns Theory, where needed.	s shall become able to us m parameters and to asse lihood and Bayesian Estir ses (Linear and Nonlinear, Box Models), Application view necessary concepts	e input-output measurement ess the validity and accuracy o nation, Cramer-Rao-Inequality , Continuous and Discrete Tim of identification methods to	
Syllabus Aim of the module is to en behaviour of dynamic sys data in form of time series the obtained models. Learning goals and qua Linear and Nonlinear Lea Recursive Estimation, Dy State Space and Input Ou several case studies. The Optimization, and System Recommended reading • Lecture manuscript • Ljung, L. (1999). System • Lecture manuscript "System	nable the students to create stems. In particular, student is to identify unknown system lifications st Squares, Maximum Like namic System Model Class utput, White Box and Black e lecture course will also rev as Theory, where needed.	s shall become able to us m parameters and to asse lihood and Bayesian Estir ses (Linear and Nonlinear, Box Models), Application view necessary concepts	e input-output measurement ess the validity and accuracy o nation, Cramer-Rao-Inequality , Continuous and Discrete Tim of identification methods to	
Syllabus Aim of the module is to en behaviour of dynamic sys data in form of time series the obtained models. Learning goals and qua Linear and Nonlinear Lea Recursive Estimation, Dy State Space and Input Ou several case studies. The Optimization, and System Recommended reading • Lecture manuscript • Ljung, L. (1999). System • Lecture manuscript "System	nable the students to create stems. In particular, student is to identify unknown system lifications st Squares, Maximum Like namic System Model Class utput, White Box and Black e lecture course will also rev as Theory, where needed.	s shall become able to us m parameters and to asse lihood and Bayesian Estir ses (Linear and Nonlinear, Box Models), Application view necessary concepts	e input-output measurement ess the validity and accuracy o nation, Cramer-Rao-Inequality , Continuous and Discrete Tim of identification methods to	
Syllabus Aim of the module is to en- behaviour of dynamic sys- data in form of time series the obtained models. Learning goals and qua Linear and Nonlinear Lea Recursive Estimation, Dy State Space and Input Ou- several case studies. The Optimization, and System Recommended reading • Lecture manuscript • Ljung, L. (1999). System • Lecture manuscript "System • Mathematics I for Engin	nable the students to create stems. In particular, student is to identify unknown system lifications st Squares, Maximum Like namic System Model Class utput, White Box and Black e lecture course will also rev as Theory, where needed.	s shall become able to us m parameters and to asse lihood and Bayesian Estir ses (Linear and Nonlinear, Box Models), Application view necessary concepts	e input-output measurement ess the validity and accuracy of nation, Cramer-Rao-Inequality , Continuous and Discrete Tim of identification methods to	
Syllabus Aim of the module is to en- behaviour of dynamic sys- data in form of time series the obtained models. Learning goals and qua Linear and Nonlinear Lea Recursive Estimation, Dy State Space and Input Or several case studies. The Optimization, and System Recommended reading • Lecture manuscript • Ljung, L. (1999). System • Lecture manuscript "System • Mathematics I for Engin • Mathematics II for Engin	nable the students to create stems. In particular, student is to identify unknown system lifications st Squares, Maximum Like namic System Model Class utput, White Box and Black e lecture course will also rev as Theory, where needed.	s shall become able to us m parameters and to asse lihood and Bayesian Estir ses (Linear and Nonlinear, Box Models), Application view necessary concepts	e input-output measurement ess the validity and accuracy of nation, Cramer-Rao-Inequality , Continuous and Discrete Tim of identification methods to	
Syllabus Aim of the module is to en behaviour of dynamic sys data in form of time series the obtained models. Learning goals and qua Linear and Nonlinear Lea Recursive Estimation, Dy State Space and Input Ou several case studies. The Optimization, and System Recommended reading • Lecture manuscript • Ljung, L. (1999). System • Lecture manuscript "Sys Course prerequisites (re Knowledge of	nable the students to create stems. In particular, student is to identify unknown system lifications st Squares, Maximum Likel namic System Model Class utput, White Box and Black e lecture course will also rev as Theory, where needed.	s shall become able to us m parameters and to asse lihood and Bayesian Estir ses (Linear and Nonlinear, Box Models), Application view necessary concepts	e input-output measurement ess the validity and accuracy o nation, Cramer-Rao-Inequality , Continuous and Discrete Tim of identification methods to	

Course				
M.Sc. Renewable Ene	ergy Engineering and Man	agement		
Availability to other co	ourses		Instruction Language	
			English	
Module No.	Module name	Semester/return		
4113	Energy in Buildings: components and systems for energy supply		3 rd Sem. / annual	
Workload/presence 6 ECTS	Prerequisite module(s)	Follow-up module(s)	No. of participants 15	
Teaching form	Examination form	Start date	Location	
Lecture (min. 80% attendance)	Written or oral	17.10.2022	INATECH	
Module coordinators:	Prof. Dr. HM. Henning			
Syllabus				
 Heat transformation: p Solar energy utilization Energy storage: therm Beside the technologies technical solutions are of 	d power (CHP) units for build rinciples, compression, abso n: principles, solar thermal co al storage, electrical storage overall systems are analyse defined and applied. Basic more re presented and discussed.	rption, adsorption illectors, photovoltaics ap and their system integrat ad and specific figures of i	tion	
Learning works and a				
of buildings. Classical p processes involving ren with the physical princip principles. They are awa recent research and dev supply systems for build	ortant technical components rocesses such as gas burner ewable energy (especially so les of these processes and a are of the state of the art in th velopment work in this field.	rs and compression chille plar energy and ambient h are able to derive key figu nese technologies and the They are able to assess a ologic and energy related	neat). The students are familiar ires of merit from these ey can describe focal points of and compare different energy I figures of merit. They are also	

Recommended reading

Ursula Eicker: Solar Technologies for Buildings. Springer. ISBN-13: 978-0471486374 Solar Cooling Handbook 3rd Revised & enlarged Edition. by Hans-Martin Henning (Editor), Mario Motta (Editor), Daniel Mugnier (Editor). Ambra. ISBN-13: 978-3990434383

Course prerequisites (recommended)

Energy Storage, Solar Energy

Availability to other cou	Instruction Language English		
Module No.	odule No. Module name		
8010	Energy Storage		3 rd Sem. / annual
Workload/presence 5 ECTS-P (150h: 56h class, 94h self-study) / 3 lectures + 1 exercisePrerequisite module(s) 		Follow-up module(s) 	No. of participants -
Teaching form	Examination form	Start date	Location
Lecture and exercises	Written or oral examination	19.10.2020	INATECH
Module coordinators: D	. Schossig		
Additional teaching sta	ff: A. Georg		
Syllabus			
chemical storage and PtC	cid, NiCd, NiMh, Lithium-ion	i; Sodium-ion; NaS / NaNi	
system design (compone management; System int components (inverter, en 4. Design of thermal stora Description of technologia applications: long term st Component and system I 5. Design of hydrogen sto and PtG storage systems for repowering in fuel cell extention to further Powe	ems (focus Lithium-ion): Tes nts, construction, cooling); egration (system options, p ergy management) age systems es: sensible heat storage, la orage, short term storage, f ayout, best case examples, orage and PtG systems: diff s, water electrolysis as core s and thermal engines, bes r-to-X technologies	at and characterization of Safety issues; Battery ma ower and communication atent heat storage, thermo from cold storage to high t , limits and future expecta ferent system layouts and component for PtG syste it case examples of PtG in	cells; Battery module and nagement; Thermal interface); Peripheral ochemical storage. Technical emperature storage. tions main components of hydrogen ms, advantages and drawbacks
system design (compone management; System int components (inverter, en 4. Design of thermal stora Description of technologia applications: long term st Component and system I 5. Design of hydrogen sto and PtG storage systems for repowering in fuel cell extention to further Powe The lecture will be accom and to discuss further des Learning goals and qua	ems (focus Lithium-ion): Tes nts, construction, cooling); egration (system options, p ergy management) age systems es: sensible heat storage, la orage, short term storage, f ayout, best case examples, orage and PtG systems: diff s, water electrolysis as core s and thermal engines, bes r-to-X technologies mpanied by a weekly exercise tails.	at and characterization of Safety issues; Battery ma ower and communication atent heat storage, thermo from cold storage to high t , limits and future expecta ferent system layouts and component for PtG syste t case examples of PtG in se to deepen the understa	cells; Battery module and nagement; Thermal interface); Peripheral ochemical storage. Technical comperature storage. tions main components of hydrogen ms, advantages and drawbacks istallations, intersectoral nding of the lecture's content
system design (compone management; System int components (inverter, en 4. Design of thermal stora Description of technologie applications: long term st Component and system I 5. Design of hydrogen sto and PtG storage systems for repowering in fuel cell extention to further Powe The lecture will be accom and to discuss further def Learning goals and qua	ems (focus Lithium-ion): Tes nts, construction, cooling); egration (system options, p ergy management) age systems es: sensible heat storage, la orage, short term storage, f ayout, best case examples, orage and PtG systems: diff s, water electrolysis as core s and thermal engines, bes r-to-X technologies mpanied by a weekly exercise tails.	est and characterization of Safety issues; Battery ma ower and communication atent heat storage, thermo- rom cold storage to high t , limits and future expecta ferent system layouts and component for PtG syste it case examples of PtG in se to deepen the understa	cells; Battery module and nagement; Thermal interface); Peripheral ochemical storage. Technical temperature storage. tions main components of hydrogen ms, advantages and drawbacks istallations, intersectoral nding of the lecture's content
system design (compone management; System int components (inverter, en 4. Design of thermal stora Description of technologia applications: long term st Component and system I 5. Design of hydrogen sta and PtG storage systems for repowering in fuel cell extention to further Powe The lecture will be accom and to discuss further det Learning goals and qua • Understanding the nece (electric, thermal and che • Basic knowledge of diffe	ems (focus Lithium-ion): Tes nts, construction, cooling); egration (system options, p ergy management) age systems es: sensible heat storage, la orage, short term storage, f ayout, best case examples, orage and PtG systems: diff s, water electrolysis as core s and thermal engines, bes r-to-X technologies mpanied by a weekly exercise tails.	est and characterization of Safety issues; Battery ma ower and communication atent heat storage, thermo from cold storage to high t , limits and future expecta ferent system layouts and component for PtG syste it case examples of PtG in se to deepen the understa ort-term, mid-term, season nical and economic requir	cells; Battery module and nagement; Thermal interface); Peripheral ochemical storage. Technical comperature storage. tions main components of hydrogen ms, advantages and drawbacks istallations, intersectoral nding of the lecture's content nal) for stationary applications ements nydro, SuperCaps, batteries,
system design (compone management; System int components (inverter, en 4. Design of thermal stora Description of technologie applications: long term st Component and system I 5. Design of hydrogen sto and PtG storage systems for repowering in fuel cell extention to further Powe The lecture will be accom and to discuss further det Learning goals and qua • Understanding the nece (electric, thermal and che • Basic knowledge of diffe and thermal storage systems	ems (focus Lithium-ion): Tes nts, construction, cooling); egration (system options, p ergy management) age systems es: sensible heat storage, la orage, short term storage, f ayout, best case examples, orage and PtG systems: diff s, water electrolysis as core s and thermal engines, bes r-to-X technologies mpanied by a weekly exercise tails.	at and characterization of Safety issues; Battery ma ower and communication atent heat storage, thermo from cold storage to high t , limits and future expecta ferent system layouts and component for PtG syste t case examples of PtG in se to deepen the understa ort-term, mid-term, season nical and economic requir plogies such as pumped-h nd Power-to-Gas (PtG) so	cells; Battery module and nagement; Thermal interface); Peripheral ochemical storage. Technical remperature storage. tions main components of hydrogen ms, advantages and drawbacks installations, intersectoral nding of the lecture's content nal) for stationary applications ements nydro, SuperCaps, batteries, lutions
system design (compone management; System int components (inverter, en 4. Design of thermal stora Description of technologie applications: long term st Component and system I 5. Design of hydrogen sto and PtG storage systems for repowering in fuel cell extention to further Powe The lecture will be accom and to discuss further det Learning goals and qua • Understanding the nece (electric, thermal and che and thermal storage systems)	ems (focus Lithium-ion): Tes nts, construction, cooling); a egration (system options, p ergy management) age systems es: sensible heat storage, la orage, short term storage, f ayout, best case examples, orage and PtG systems: diff s, water electrolysis as core s and thermal engines, bes r-to-X technologies mpanied by a weekly exercise tails.	at and characterization of Safety issues; Battery ma ower and communication atent heat storage, thermo from cold storage to high t , limits and future expecta ferent system layouts and component for PtG syste t case examples of PtG in se to deepen the understa ort-term, mid-term, season nical and economic requir plogies such as pumped-h nd Power-to-Gas (PtG) so	cells; Battery module and nagement; Thermal interface); Peripheral ochemical storage. Technical remperature storage. tions main components of hydrogen ms, advantages and drawbacks installations, intersectoral nding of the lecture's content nal) for stationary applications ements hydro, SuperCaps, batteries, lutions

Recommended reading

- T. Letcher: Storing Energy
- G. Pistoia: Lithium-Ion Batteries Advances and Applications
- A. Jossen: Moderne Akkumulatoren richtig einsetzen
- J.-C. Hadorn: Thermal energy storage for solar and low energy systems P. Moseley and J. Garche: Electrochemical Energy Storage for Renewable Sources and Grid Balancing

Course prerequisites (recommended)

Basic understanding of Engineering Physics and Engineering Chemistry

Course			
M.Sc. Renewable Energy	/ Engineering and Ma	nagement	
Availability to other courses			Instruction Language
			English
Module No. Module name			Semester/return
97010	Photovoltaics 1		3 rd Sem. / annual
Workload/presence			
5 ECTS (150 h/60 h)	module(s)	Photovoltaics 1	No. of participants Max. 25
	Natural Resources and Conversion Technologies		
Teaching form	Examination form	Start date	Location
Lectures, Exercises, Seminar, lab experiments	Written assignment	07.11.2022 (distributed over 6 weeks)	University of Freiburg Fraunhofer ISE
Module coordinator: Prof.	Dr. Hans-Martin Hennir	ng	
Additional teaching staff:	Dr. Ralf Preu (ralf preu)	aise fraunhofer de)	
Syllabus			
 pn- Junction and IV Silicon: Quartz, me Industrial silicon so Module technology Cost of ownership Characterization of Loss mechanisms a High efficiency cell Introduction to PV s 	d recombination, carried -characteristics tallurgical silicon, crysta ar cell production and a cells / material and improvements concept systems		gher efficiency
Learning goals and qualif	ications		
This is the prerequisite for t topics of this course. Subse starting from quartz via sola	he understanding of the quently the student will r cell production to mod Il production. The stude	principles of solar cell phys study the whole production lule fabrication. This will be ents will understand main los	concepts of semiconductors. ics which is one of the main chain of silicon solar cells accompanied by an in-depth ss mechanisms of silicon solar
Recommended reading			
Conversion, To <u>Amazon</u> (statu 2. B. Streetman, 3. S.M. Sze, Phy 4. Martin A. Gree	echnologies and System s 16.8.2016) Solid State Electronic D sics of Semiconductor E n, Solar Cells: Operatin		ree download for kindle via
	Physics of Solar Cells The Physics of Solar C		

Basic knowledge of semiconductor physics, "Natural Resources and Conversion Technologies - Photovoltaics"

Course

Availability to other cour	Instruction Language		
	English		
Module No.	Module name		Semester/return
97012	Photovoltaics 2		3 rd Sem. / annual
Workload/presence	Prerequisite	Follow-up module(s)	No. of participants
5 ECTS (150 h/60 h)	module(s)	module(s)	
	Photovoltaics 1		
Teaching form	Examination form Start date		Location
Exercises, Seminar	Seminar Presentation, Report	09.01.2023 (distributed over 6 weeks)	University of Freiburg Fraunhofer ISE

Module coordinator: Prof. Dr. Hans-Martin Henning

Additional teaching staff: Dr. Ralf Preu (ralf.preu@ise.fraunhofer.de)

Syllabus

A seminar about specific topics of PV technology, systems and costs thereof (e.g. review of different approaches for the calculation of levelized cost of PV electricity or Review of PV Technology for industrial high efficiency solar cells). The three week course will be distributed into 3 phases.

1st week: topic collection, group definition (up to 5 groups min. 2 person per group), introduction to the topic by a tutor including distribution of literature and work within the group, study of literature, one additional appointment with tutor at the end of the week to discuss open points and structure of the presentation and report.

2nd week: preparation of final presentation, two-day seminar with presence requested by all, each individual member of a group has to give a sub-presentation.

3rd week: Groups will have to hand in a report on the review (max. 10 pages) at the beginning of the week. At the end of the week a short exam will be written on all presented topics.

High quality reports might be handed in as abstracts for an international photovoltaic conference. Preparation of such an abstract and paper is beyond the scope of the course itself but can be supported by the academic staff.

Learning goals and qualifications

Based on the knowledge acquired in Photovoltaics 1 this course will deepen the knowledge of the students in PV. Furthermore students will study group work and learn to review a scientific topic in a short given time. The students will gain practice in oral presentation and written publication on a scientific level.

Recommended reading

See Photovoltaics 1 – specific literature will be distributed at the beginning of the course

Course prerequisites

Successful participation in Photovoltaics 1 or equivalent.

Course			
M.Sc. Renewable Energ	gy Engineering and Man	agement	
Availability to other cou	rses		Instruction Language
			English
Module No.	Module name		Semester/return
97015	Solar Thermal End	Solar Thermal Energy 2	
Workload/presence	Prerequisite	Follow-up module(s)	No. of participants
5 ECTS (150 h/60 h)	module(s)		Max. 25
, , , , , , , , , , , , , , , , , , ,	Solar Thermal Energy 1		
Teaching form	Examination form	Start date	Location
Project, Seminar, Discussion Forum	Seminar presentation, Report	09.01.2023 (distributed over 6 weeks)	University of Freiburg Fraunhofer ISE
Module coordinator: Pro	f. Dr. Werner Platzer		-
Additional teaching staf	f: Dr. Korbinian Kramer, D	r. Manuel Lämmle, Dr. Alex	x Morgenstern

Syllabus

A seminar about specific topics of solar thermal technology, systems and economics thereof (e. g. review of different approaches for the determining the cost-efficiency of solar thermal projects in relation to other renewables or energy-efficiency measures or comparison of concentrator technologies for industrial processes or for concentrated solar thermal power CSP). The six-week course will be distributed into 3 phases (spread out over 6 weeks!).

1st phase: topic collection, group definition (1-3 persons per group), introduction to the topic by a tutor including distribution of literature and work within the group, study of literature, one additional appointment with tutor at the end of the week to discuss open points and structure of the presentation and report.

2nd phase: preparation of final presentation, two-day seminar with presence requested by all, each individual member of a group has to give a sub-presentation.

3rd phase: Groups will have to hand in a report on the review (max. 10 pages) at the beginning of the phase 3. Within phase 3 there is opportunity to discuss and ask questions in Online Forum and a meeting on the results presented by all participants. At the end of the phase 3 a short exam will be written on all presented topics.

High quality reports might be handed in as abstracts for an international conference like Eurosun or Solar PACES Conferences. Preparation of such an abstract and paper is beyond the scope of the course itself but can be supported by the academic staff.

Learning goals and qualifications

Based on the knowledge acquired in Solar Thermal Systems 1 this course will deepen the knowledge of the students in Solar Thermal technology and applications. Furthermore students will study and work in groups and learn to review a scientific topic in a short given time. The students will gain practice in oral presentation and written publication on a scientific level.

Recommended reading

See Solar Thermal Systems 1 – specific literature will be distributed at the beginning of the course

Course prerequisites

Successful participation in Solar Thermal Systems 1 or **equivalent** (may be discussed with the module coordinator)

Course			
M.Sc. Renewable Energy	gy Engineering and Man	agement	
Availability to other courses			Instruction Language
			English
Module No.	Module name		Semester/return
97021	Managing RE Projects - Case Studies		3 rd Sem. / annual
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants
5 ECTS-P (150h/60 h)	Introduction to Business Management		max. 25
Teaching form	Examination form	Start date	Location
Lectures, guest lectures, case studies	Seminar presentation + report	07.11.2022	Online; (t.b.a.)
Module coordinator: PD	Dr. Chantal Ruppert-Winke	el (chantal.ruppert@envg	ov.uni-freiburg.de)
Teaching staff:			
Syllabus			
lectures before through an will work on selected "real groups of students. Stude They will have to organize	oplication in energy manage life" management case stu nts will work as consultants	ement examples. During udies for energy-projects, s for the commissioning c rld project cases (under th	ge gained in the management the three weeks, the students each to be done by smaller ompanies on given work orders ne supervision of the lecturer e companies in their future
	in an introduction into projens/ -projects from different		est lectures from management
At the end of the module, and the class and have to		tation on their results to the	he commissioning companies
Note: This is a module air			
	ning to practice professiona aff, students' motivation ar		
support by the teaching st	aff, students' motivation ar		

- strategic thinking and application of strategic management concepts project management skills and experiences \geq
- \triangleright
- > insights into different RE management fields, challenges and organizations
- in-depth work on real life case studies \geq
- Additional general skills: rhetoric, discussion and presentation skills, competence for team work \geq

Recommended reading

During the module materials will be made available via the learning platform ILIAS

Course prerequisites

None.

Course				
M.Sc. Renewable Ene	ergy Engineering and Man	agement		
Availability to other co	urses		Instruction Language	
			English	
Module No.	Iodule No. Module name		Semester/return	
97022	97022 Landscape, Nature Protection, Landuse conflicts		3 rd Sem. / annual	
Workload/presence 5 ECTS-P (150/60h)	Prerequisite module(s)	Follow-up module(s)	No. of participants Max. 25	
Teaching form	Examination form	Start date	Location	
Project work	Project report, presentation, group work and excursion	28.11.2022	t.b.a.	
Module coordinator: P	rof. Dr. Barbara Koch		1	
Additional teaching sta	aff: Mirko Mälicke, Joao Pau	lo Pereira		
Syllabus				
Introduction to the signif	icance renewable energy pro	jects for environment and	landscapes	
study the chang An outline is give Assessment (El How to assess the impa	es in environment and landso en between the difference of A) what is the meaning of LC cts and interdependencies w	capes related to renewable Life Cycle Assessment (Lo A compared to EIA. ith the environment.	identify practical examples to e energy projects and policies. CA) and Environmental Impact e scheme of an EIA process is	
The data needs and methods for performing an EIA, are described. The scheme of an EIA process is presented and discussed. Tools for data assessment and performing (GIS) the EIA introduced. They study a real case. They reflect the situation for the EIA implementation in reference to their home countries.				
Case study				
information supp	lect a case from the renewak ported by the lecturer team. T group and discuss the proble	They perform a simplified E	IA for one case. They present	
Learning goals and qu	alifications			
about EIA and the EIA p	nmental and landscape prob process. Students will be able reflect the problems on intern	e to apply the tools for data	0.	
Recommended reading	3			
	•		astructures: Applications of Sustainable Energy Reviews,	
Course prerequisites:				
L_				

-

Course			
M.Sc. Renewable Ener	rgy Engineering and Manag	jement	
Availability to other co	Durses		Instruction Language
This module is offered a Environmental Sciences	as core and elective module t s	o the MSc programme	English
Module No.	Module name		Semester/return
64101	Environmental Eco	Environmental Economics	
Workload/presence 5 ECTS-P (150/60h)	Prerequisite module(s)	Prerequisite module(s) Follow-up module(s)	
Teaching form	Examination form	Start date	Location
Lecture + Tutorial	Written exam 28.11.2022		online
Module coordinator: F	Prof. Dr. Stefan Baumgärtner		
Additional teaching st	aff: Joaquín Felber		

Syllabus

In this course, students will learn how to analyze the natural environment and natural resources from an economic perspective. To this end, students will learn intermediate and advanced concepts and methods from ecological, environmental and resource economics, and apply them to analyze economy-environment systems.

Topics to be covered include the following:

- Review of basic concepts from microeconomics (utility, scarcity, optimization, efficiency, markets)
- Welfare analysis of markets, market failure and market regulation:
 - public goods
 - common-pool-resources
 - externalities
- Economic valuation of environmental quality and natural resources Decision-making under uncertainty: risk, resilience, and insurance

Learning goals and qualifications

1 = Knowledge: students know advanced theories, methods and empirical facts of environmental economics and can reproduce them

2 = Understanding: students are able to critically reflect the economic approach to analyzing the natural environment, including its premises and limitations, and can explain it in a comprehensible manner 3 = Application: students can independently apply advanced theories and methods of environmental economics to simple problems of the natural environment and resources

4 = Analysis: students are able to systematically analyze the mutual interdependencies between economic and environmental variables at an advanced level

Recommended reading

There is no single textbook for this course. References for several chapters of the course include:

- M. Common and S. Stagl: Ecological Economics. An Introduction, Cambridge University Press, 2005
- H.E. Daly and J. Farley: *Ecological Economics. Principles and Applications*, Washington DC: Island Press, 2004
- Endres and V. Radke: Economics for Environmental Studies. A Strategic Guide to Micro- and Macroeconomics, Springer, 2012
- N. Hanley, J.F. Shogren and B. White: *Environmental Economics in Theory and Practice*, 2nd edition, Palgrave Macmillan, 2007

R. Perman, Y. Ma, J. McGilvray and M. Common: *Natural Resource and Environmental Economics*, 3rd edition, Pearson Education, 2003

Course prerequisites:

- See details on HISinOne

Availability to other courses: This module is offered as elective to the MSc programmes Environmental Sciences, MEG, and Forest sciences			Instruction Language English
Module No.	Module name		Semester/return
64087	Life cycle management		3 rd Sem. / annual
Workload/presence 5 ECTS-P (150h/60h)	Prerequisite module(s) Follow-up module(s)		No. of participants Max. 35
Teaching form	Examination form	Start date	Location
Lectures, exercises, group work	Written assignment (33%), Term paper + group work (67%)	09.01.2023	Tba.
Module coordinator: Prof. Dr	. Stefan Pauliuk (<u>stefan.pa</u>	uliuk@indecol.uni-freiburg	<u>ı.de</u>)
Additional teaching staff			
Johan Velez			
Syllabus			
The course enables participant products or technical installatio			
During the first half of the cours modelling of life cycle inventori exercises and study the relevan	es and life cycle impact ass		
During the second half, the par meets both ISO and scientific s installation, and perform a life of of the module. It will be graded	standards. The participants cycle management case stu	form small groups of 2-3, udy. The final report on the	chose a product or e case study is due at the end
During the second half, backgr development of life cycle mana		ons on the potential, limits	, applications, and future
A written exam (1.5 hours), the the course.	result of which accounts for	or one third of the final gra	de, will be held at the end of
The module is interactive and e	encourages strong student	participation.	

Learning goals and qualifications

- Basic knowledge of quantitative systems analysis of human-environment systems, basics of material and energy flow analysis.
- Detailed knowledge about the state of the art, the software, and databases of life cycle assessment according to the standards ISO 14040 and 14044.
- Basic knowledge of life cycle impact assessment methods.
- Soft skills: discussion, scientific writing skills, capacity for team work.
- At the end of the course, the successful participant will be able to conduct, interpret, document, and present life cycle assessment studies of products or technical installations using state-of-the-art tools and databases.

Recommended reading

- LCA Textbook: <u>http://www.lcatextbook.com/.</u> Much of the basic material of the course will be based on this book.
- OpenLCA tutorials (<u>http://www.openlca.org/videos</u>).
- Manual of the ReCiPe impact assessment method (<u>http://www.lcia-recipe.net/file-cabinet/ReCiPe_main_report_MAY_2013.pdf</u>).

Course prerequisites

Calculations with Excel, Basic knowledge on vectors, matrices, matrix multiplication and matrix inversion.

Important: This course requires each participant to work on her/his own laptop with the openLCA software (<u>http://www.openlca.org/</u>) and the ecoinvent database installed. openLCA is freeware. A copy of the ecoinvent database will be provided at the beginning of the course.

Course			
M.Sc. Renewable Energy Engi	neering and Management		
Availability to other courses This module is offered as elective to the MSc programmes MEG, Environmental Sciences, and Forest sciences			Instruction Language English
Module No.	Module name		Semester/return
97024	Environmental and Energy Transition Law		3 rd Sem. / annual
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants
5 ECTS-P (150h/60h)			Max. 25
Teaching form	Examination form	Start date	Location
Socratic lectures, group and individual work, presentations, discussions	SL Written assignment (pass/fail) PL Written assignment (30%, 60 min.), PL Written individual report (3000 words) OR group presentation and report (60 min. / group and 750 words / person, 70%)	09.01.2023	Tba.
Module coordinator: Jun-Pro	f. Cathrin Zengerling, e-ma	ail: <u>cathrin.zengerling@en</u>	rlaw.uni-freiburg.de
Prof. Dr. Errol Meidinger, email	: eemeid@buffalo.edu		
Additional teaching staff			

Invited experts from the private and public sector

Syllabus

In this module students gain fundamental knowledge of environmental and energy transition law from multi-level governance and international comparative perspectives. They acquire sector-specific knowledge of environmental law in the fields of climate change, air pollution, water, oceans, biodiversity, nature protection, chemicals and waste/circular economy law. With regard to energy transition law, students become familiar with energy and planning law directed to energy efficiency and the switch from fossil fuel based to renewable energy in the sectors of electricity, heating/cooling and mobility.

Throughout the course, students learn about different legal instruments and their strengths and weaknesses in reaching regulatory goals. Both, public and private law perspectives as well as different legal traditions such as common and civil law approaches are covered. Students also get insights into the role of environmental protection and the energy transition in other international legal regimes such as world trade, investment and human rights law.

The course is taught interactively and active participation of students is encouraged. Students become familiar with various primary legal documents such as (excerpts of) international treaties, European directives, constitutions, national laws, administrative permits, land use plans as well as decisions of the judiciary, and learn how to work with them. Students apply and deepen their knowledge under guidance of the instructors in their specific fields of interest via case studies. Throughout the course, various soft skills such as debating in socratic discussions, scientific writing, interdisciplinary and intercultural teamwork are imparted.

Learning goals and qualifications

In this module students learn to:

- identify the main types and instruments of environmental and energy transition law and their distinctive characteristics (1)(2);
- understand interactions and conflicts between different types, sources and instruments of environmental and energy transition law (2);
- assess the inherent strengths and limitations of environmental and energy transition law for environmental and energy governance (5);
- realize that there are alternative ways of structuring environmental and energy transition responsibilities and powers through law (2)(4);
- formulate legal and policy arguments relevant to future environmental and energy transition law development (6);
- critically and intelligently evaluate arguments for legal change (4);
- understand the relationship between scientific knowledge, social movements, and environmental/ energy transition law (2);
- apply basic skills of legal research and legal arguments to relevant case studies (3)(6).

Classification of cognitive skills following Bloom (1956):

1 = *Knowledge*: recalling facts, terms, basic concepts and answers; 2 = *Comprehension*: understanding something; 3 = *Application*: using a general concept to solve problems in a particular situation; 4 = *Analysis*: breaking something down into its parts; 5 = *Synthesis*: creating something new by putting parts of different ideas together to make a whole; 6 = *Evaluation*: judging the value of material or methods.

Recommended reading

Sands, P., & Peel, J. (2018). Principles of international environmental law. Cambridge University Press.

Meidinger, Errol (2008), "Property Law for Development Policy and Institutional Theory: Problems of Structure, Choice and Change." In David Mark, Barry Smith, and Isaac Ehrlich, *The Mystery of Capital and the New Philosophy of Social Reality*. Chicago: Open Court Publishing, pp.193-227.

Reading material will be provided during the course via the e-learning platform ILIAS.

Course prerequisites

Module number	Module name		
95990	Elective: Technology	Assessment – Theory and Practic	e
Course of study Type of course		Semester / Rotation	
M.Sc. Environmenta	l Governance	Elective	3 rd / Winter Term
Teaching methods		Prerequisites for attendance	Language
lectures, plenary dis	cussions, group work	None	English
Type of examinatior	ı (Final Grade Compos	ition)	ECTS-LP (Workload)
 PL Literature Review (Individual assessment of a self-chosen TA study along guiding questions), max. 2500 words (4 pages) (50%) PL Group Research Report, 15-40 pages (50%) 		vords (4 pages) (50%)	5 (150h)
*Participation in dis	cussions & presentatio	ons is obligatory; not graded	
Module coordinator			SWS
apl. Prof. Dr. Philipp	Späth, Email: <u>spaeth@</u>	<u>envgov.uni-freiburg.de</u>	4
Additional teachers	involved		
Additional faculty ar	nd external experts on	various topics will be involved.	

Syllabus

As environmental limitations of current economic regimes and lifestyles are increasingly recognized, hope is often directed towards technological innovations (e.g. resource efficiency, 'green' technologies). Assumptions about the 'superiority' of certain technologies are a precondition for any attempt to accelerate the development and diffusion of these technologies by means of science, technology and innovation governance. However, to what extent particular technological innovations can in fact alleviate pressure on natural resources is hard to assess, particularly in the early stages of their development.

We study the promises, methods and practices involved in systematic Technology Assessments (TA) and their role in problematizing the potentials and risks involved in technological change. Starting from an overview of approaches, institutions and methods of TA, we aim to understand the dilemmas of such endeavors and how people tried to overcome them. You will first evaluate a self-chosen TA study that has been published by a recognized TA institution against common criteria. The second and third week of the module are dedicated to the development of your own technology assessment of a specific aspect important to an international promoted the previous German Government: hydrogen economy as by https://www.bmbf.de/bmbf/en/home/ documents/west-africa-can-become-the-cli-energy-powerhouse-ofthe-world.html.

You will develop a TA study on a self-chosen aspect of a future hydrogen economy in a team of three to sixteen students. On the way, you will gain insights into how parliamentarian TA is conducted by the German TAB (which has been commissioned with a study on opportunities and risks of hydrogen partnerships and technologies in developing countries, too: <u>https://www.tab-beim-bundestag.de/english/projects_opportunities-and-risks-of-hydrogen-partnerships-and-technologies-in-developing-countries.php</u>).

Learning goals and qualifications

In this module students learn to:

- describe various objectives and institutional forms of technology assessment (1, 4);
- understand the assumptions and world views that influenced various approaches to TA (2, 4);
- be fluent with TA terminology and practices (3);
- identify different challenges and dilemmas of expertise or consensus-oriented methods for TA (5);
- evaluate and criticize TA studies of various scopes (6);
- apply research methods (analysis of literature, interview techniques etc.) (3);

- position themselves with regard to different approaches to technology assessment (6);
- assess the potentials and risks potentially involved in various forms of urban food production (3-6).

Classification of cognitive skills following Bloom (1956):

1 = *Knowledge*: recalling facts, terms, basic concepts and answers; 2 = *Comprehension*: understanding something; 3 = *Application*: using a general concept to solve problems in a particular situation; 4 = *Analysis*: breaking something down into its parts; 5 = *Synthesis*: creating something new by putting parts of different ideas together to make a whole; 6 = *Evaluation*: judging the value of material or methods.

Core readings

A list of relevant texts will be made available at the start of the course; readings themselves will be made available online via Ilias. Introductory reading (pdf available on request):

Grunwald, A. (2019). "Technology assessment in practice and theory". Oxford, Routledge. pp. 1-12.

Availability to other cou	gy Engineering and Man Irses		Instruction Language
			English
Module No.	Module name		Semester/return
97025	Regulation and Assessment of the Systemic Aspects of the Energy Transition		3 rd Sem. / annual
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants
5 ECTS-P (150h/60h)			Max. 25
Teaching form	Examination form	Start date	Locations
Socratic lectures, group work, presentations	Written assignment, group work presentation	Online	

Additional teaching staff: Guests t.b.a.

Syllabus

In this module students gain fundamental knowledge of the system implications of renewable energies that result from the main characteristics of electricity generation from renewables, such as their variability, their low marginal costs and the changing geographical distribution. This includes three main steps:

- First, the module explores what the various system implications of renewables are and which options are available and developments take place to adapt the system accordingly.
- Second, it deals with the assessment of these options from various perspectives, especially economic and social perspectives, how this is reflected in stakeholder positions and how such an assessment can be used to inform policy-making.
- Third, the module covers policy and regulatory options to address these system implications. Which regulatory options exist, what are their pros and cons and how are they implemented in different constituencies?

The focus is not on system implications in a narrow engineering sense, but the module takes a broader look at how the power and energy system does transform and needs to transform in order to implement a system based on renewables. This includes the following aspects: Grid infrastructure: flexibility requirements: various forms of centralisation and decentralisation of power systems, sector integration; market design.

The module applies an interdisciplinary approach. It is not based on a any specific methodological approach, but rather explores what instruments are needed and useful for dealing with the above questions. The module also introduces system transformation thinking.

The module will introduce these issues at a general level and with a focus on Germany in a European context as a specific case. Students will then apply the insights to other countries or to specific system options. Active participation of students is expected throughout the course.

Learning goals and qualifications

In this module acquire knowledge on three levels:

- 1) Energy system knowledge: What are key system implications of renewables, options to deal with them and related regulatory approaches? What are the implications of system transformation? This includes technical, economic, social and policy knowledge.
- 2) How can the various options available be assessed and what needs to be taken into account for that purpose in a real-world and policy context? How can assessments made by different stakeholders be judged?
- 3) How can the results be presented? Discussion, presentation and writing

Recommended reading

IEA-RETD (2015) Integration of Variable Renewables (RE-integration), [A. Conway; Mott MacDonald] IEA Implementing Agreement for Renewable Energy Technology Deployment (IEA-RETD), Utrecht, Netherlands http://iea-retd.org/archives/publications/re-integration)

Bauknecht, D., Heinemann, C., Seebach, D., Vogel, M., 2020. Behind and beyond the meter: what's in it for the system?, in: Sioshansi, F. (Ed.), Behind and beyond the meter: Digitalization, Aggregation, Optimization, Monetization. ELSEVIER ACADEMIC PRESS, [S.I.].

Reading material will be provided during the course via the e-learning platform ILIAS.

Course prerequisites

Availability to other cours	ses		Instruction Language
M.Sc. Renewable Energy Engineering and Management			English
Module No.	Module name		
95996	Introduction to Susta	Introduction to Sustainability Transitions	
Workload/presence 5 ECTS-P (150h/60h)	Prerequisite module(s)	Follow-up module(s)	No. of participants Max. 25
Teaching form	Examination form	Start date	Location
Socratic lectures, group we presentations	wrk, Written assignment, group work presentation	20.02.2023	Hörsaal Herman-Herder- Str. 5
Module coordinator: Pro	f. Dr. Dierk Bauknecht		
Additional teaching staff	Sarah Olbrich, guests tba		
Syllabus			
pollution. These challenges defining, characterised by a they are context-dependen	environmental and societal ch a are wicked problems: they ar a high degree of complexity an t (Markard et al. 2012; Köhler t alter our ways of producing a	e normative both in terms d uncertainty, value-lader et al. 2019). To solve thos	of problem- and solutions- n and highly-contested, and se problems, systemic
pollution. These challenges defining, characterised by a they are context-dependen changes are necessary tha include changes on multiple energy system.	are wicked problems: they ar a high degree of complexity an t (Markard et al. 2012; Köhler t alter our ways of producing a e dimensions. This is true for a	e normative both in terms ad uncertainty, value-lader et al. 2019). To solve thos and consuming, go beyon a number of socio-technic	of problem- and solutions- n and highly-contested, and se problems, systemic d technological fixes, and al systems such as the
pollution. These challenges defining, characterised by a they are context-dependen changes are necessary tha include changes on multiple energy system. In recent years, Sustainabi research community to cor	a are wicked problems: they are a high degree of complexity and t (Markard et al. 2012; Köhler t alter our ways of producing a e dimensions. This is true for a lity Transition Studies evolved tribute to solving these challer dynamics, and (2) generating	e normative both in terms id uncertainty, value-lader et al. 2019). To solve thos and consuming, go beyond a number of socio-technic as a new research agenc ages. It has two main aims	a of problem- and solutions- n and highly-contested, and se problems, systemic d technological fixes, and al systems such as the la and multidisciplinary s: (1) gaining a better
pollution. These challenges defining, characterised by a they are context-dependen changes are necessary tha include changes on multiple energy system. In recent years, Sustainabi research community to cor understanding of transition (governance of transitions) This seminar introduces the frameworks for systemic ch theoretical insights, but oth	s are wicked problems: they ar a high degree of complexity an t (Markard et al. 2012; Köhler t alter our ways of producing a e dimensions. This is true for a lity Transition Studies evolved tribute to solving these challer dynamics, and (2) generating e field of Sustainability Transiti hange. We will mainly use the of er sectors and a comparison b theory can inform and help pra	e normative both in terms ad uncertainty, value-lader et al. 2019). To solve thos and consuming, go beyon a number of socio-technic as a new research agence nges. It has two main aims an impact for today's trans fons. We will learn about r example of the energy trans between sectors will be dis	s of problem- and solutions- n and highly-contested, and se problems, systemic d technological fixes, and al systems such as the la and multidisciplinary s: (1) gaining a better isitions in process main concepts and nsition to discuss and apply scussed as well. Moreover,
pollution. These challenges defining, characterised by a they are context-dependen changes are necessary tha include changes on multiple energy system. In recent years, Sustainabi research community to cor understanding of transition (governance of transitions) This seminar introduces the frameworks for systemic ch theoretical insights, but oth we will evaluate in how far	a are wicked problems: they are a high degree of complexity and t (Markard et al. 2012; Köhler t alter our ways of producing a e dimensions. This is true for a lity Transition Studies evolved tribute to solving these challer dynamics, and (2) generating e field of Sustainability Transiti nange. We will mainly use the er sectors and a comparison b theory can inform and help pra- naking.	e normative both in terms ad uncertainty, value-lader et al. 2019). To solve thos and consuming, go beyon a number of socio-technic as a new research agence nges. It has two main aims an impact for today's trans fons. We will learn about r example of the energy trans between sectors will be dis	s of problem- and solutions- n and highly-contested, and se problems, systemic d technological fixes, and al systems such as the la and multidisciplinary s: (1) gaining a better isitions in process main concepts and nsition to discuss and apply scussed as well. Moreover,

Course

M.Sc. Renewable Energy Engineering and Management	
Availability to other courses This module is also available to students of the MSc programmes MEG, Geography, REM, Forest Sciences, and SSE.	Instruction Language English (German speaker available

Module No.	Module name	Semester/return				
64116	Industrial Ecology Projekt		3 rd Sem. / annual			
Workload/presence	Prerequisite module(s)	No. of participants				
5 ECTS-P (150h/60h)			Max. 15			
Teaching form	Examination form	Start date	Location			
Seminars and project work	Term paper	20.02.2023	Tba.			
Module coordinator: Prof.Dr	Module coordinator: Prof.Dr. Stefan Pauliuk (<u>stefan.pauliuk@indecol.uni-freiburg.de</u>)					
Additional teaching staff						
Members of the industrial eco	ology group					

Syllabus

This module prepares the students for conducting their master thesis in the industrial ecology group, and is reserved mostly for students who intend to do so. Its introduction consists of an overview of the main system linkages, methods, and history of industrial ecology. During the main part of the course, the students work independently on either their future master thesis topic or on another self-chosen topic that can be studied using industrial ecology methods.

Important note:

This course is mandatory for all students who wish to conduct the research for their MSc thesis in the industrial ecology group. Access restrictions apply, as students need to have successfully completed the Life Cycle Management Course. Potential participants are expected to contact the module coordinator beforehand, the deadline for applying for a master thesis in the group is Jan 20 of each year. Students who do not aim for an MSc thesis in the field of industrial ecology can also apply but will not be given priority during admission.

Content:

The goal of this course is to enable students to independently conduct quantitative research on industrial systems (industrial ecology). Participants will become familiar with the state of the art of the research on industrial systems, including material and energy flow analysis, life cycle sustainability assessment, environmental (carbon, water, land) footprinting, and integrated assessment modelling. They will learn about the central steps required for a master thesis in the field of industrial ecology, and by the end of the course, they will be able to formulate a research proposal as starting point of their MSc thesis.

Course work will include seminars and the preparation of a term paper, both under supervision by members of the industrial ecology group. The term paper is an independent scientific piece of work, which will serve as basis for the course grade. It is expected to contain a literature review with a research gap, research question (goal and scope), followed by a quantitative analysis of a sustainable development strategy. Students can work on a topic of their choice, which, as experience has shown, is their future master thesis topic in most cases.

By the end of the course, students who wish to write their thesis in the group have enough input to develop their thesis proposal (which is not part of this course).

Learning goals and qualifications

After successful completion of the course, students will have an overview of the current research topics in industrial ecology, the important actors in the field, the common scientific journals and other publication channels, and the main applications of industrial ecology research in policy making and industry.

In particular, the students will be able to:

- conduct a literature search on the quantitative analysis of specific sustainable development strategies
- critically review the literature, identify research gaps, and formulate their own research questions
- independently improve skills on and apply one the central methods of industrial systems analysis, including material flow analysis, input-output analysis, and life cycle assessment
- conduct a case study and write a scientific text in German or English that adheres to the specific writing style of the environmental systems sciences
- interact with experts on environmental and industrial systems analysis on a scientific level.

Recommended reading

- Industrial Ecology (2nd Edition), by Thomas E. Graedel and Braden R. Allenby, ISBN 978-0130467133, 1 copy in the library
- Guidelines for Good Scientific Practice and Supervision in the Industrial Ecology Group in Freiburg, Stefan Pauliuk 2016. Can be obtained from module coordinator or from this link: <u>http://www.omnibus.uni-</u> freiburg. do/s op1046/Decuments/Scientifie)//ork_IndEcolErciburg. 2016.pdf

freiburg.de/~sp1046/Documents/ScientificWork_IndEcolFreiburg_2016.pdf

- Input-Output Analysis: Foundations and Extensions (2nd Edition), by Ronald E. Miller and Peter D. Blair, ISBN 978-0521739023, several copies in the library
- **Practical Handbook of material flow analysis**, by Brunner and Rechberger, ISBN 0203507207, 1 copy in the library
- Industrial Ecology open online course: <u>http://www.teaching.industrialecology.uni-freiburg.de/</u>

Course prerequisites

Participants must have participated in the Life Cycle Management course before taking this course.

Course			
M.Sc. Renewable Ene	rgy Engineering and Man	agement	
Availability to other co	Instruction Language		
	English		
Module No. Module name			Semester/return
93952	Energy System Ope	erations	2 nd Sem. / annual
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants
5 ECTS/(100h/50h)	Natural Resources and Conversion Technologies	Elective modules	Max. 75
Teaching form	Examination form	Start date	Location
Lectures, exercises, excursion	Exam	17.04.2023	t.b.a
Module coordinator: P	of. Dr. Anke Weidlich		
Additional teaching sta	ff:		

Syllabus

To understand the role of renewable energies for sustainable energy systems, it is essential to know how today's electricity systems work. In this module, electricity systems are discussed from the generation via the transmission and distribution to the usage of electric power. Links to other energy systems, such as natural gas supply, heating systems or mobility are reflected as well. Topics include fundamentals about the functioning of three-phase alternating current systems, along with challenges for frequency control and voltage stability in the presence of high shares of fluctuating renewable energy. Basics of markets and the specifics of electricity markets help to understand the system operation. Relevant discussions on the further development of energy systems, for example the degree of (de)centralization, the role of cross-border electricity exchange, the role of market mechanism and the available technologies for providing operational flexibility for matching demand and supply are made comprehensible by facilitating the understanding of its underlying fundamentals.

Learning goals and qualifications

The students acquire fundamental knowledge of today's electricity systems, which is essential to integrate renewable energy power supplies effectively in existing electricity systems in terms of technology, economics and sustainability. The students understand how electricity is distributed through the electricity grid and know what can be done to solve challenges in the system stability and the security of supply. They know how energy system operation is managed by the interplay of different market roles, such as transmission and distribution system operators, generating companies, power markets, and energy retailers.

Recommended reading

• Relevant literature will be given to the student in advance and also presented in the module

Course prerequisites

Content of the module "Scientific Framework for REM" and "Natural Resources and Conversion Technologies".

M.Sc. Renewable Ener	<u> </u>		
	gy Engineering and Man	agement	
Availability to other courses			Instruction Language
			English
odule No. Module name			Semester/return
93410	Introduction to Bus	iness Management	2 nd Sem. / annual
Workload/presence	Prerequisite module(s)		No. of participants
5 ECTS-P (150h/60 h)		Management II	max. 75
Teaching form	Examination form	Start date	Location
Lectures, Exercises, Seminar	Written Assignments	08.05.2023	t.b.a
Module coordinator: Dr.	Roderich von Detten (r.v.d	letten@ife.uni-freiburg.de)	
Additional teaching staf	f:		
indicatators and financi 2. Basics of manage Various topics, such as	ement:		
Systemic Management Leadership, Marketing, business ethics) will be Teaching form: Whereas week no.1 wil groups compete on a vi	, Strategic Management Risk Management, Orga discussed I be dedicated to playing	& Planning, Human Res anization Structures & of a computer-based busi and 3 a taught in a "se	ther selected topics (e.g. ness game (where differen minar format" i.e. via the
Systemic Management Leadership, Marketing, business ethics) will be Teaching form: Whereas week no.1 wil groups compete on a vi discussions of selected In addition, the choice o	, Strategic Management Risk Management, Orga discussed I be dedicated to playing irtual market), week no.2 readings (textbook chap	& Planning, Human Res anization Structures & of a computer-based busi and 3 a taught in a "se oters, articles or scientifi bic, the carving out of pro	source Management & ther selected topics (e.g. mess game (where differen minar format" i.e. via the c publications). oper research questions as
Systemic Management Leadership, Marketing, business ethics) will be Teaching form: Whereas week no.1 wil groups compete on a vi discussions of selected In addition, the choice of well as the writing proce	, Strategic Management Risk Management, Orga discussed I be dedicated to playing irtual market), week no.2 readings (textbook chap of an individual paper top ess for scientific papers v lifications	& Planning, Human Res anization Structures & of a computer-based busi and 3 a taught in a "se oters, articles or scientifi bic, the carving out of pro will be discussed during	source Management & ther selected topics (e.g. mess game (where differen minar format" i.e. via the c publications). oper research questions as class
Systemic Management Leadership, Marketing, business ethics) will be Teaching form: Whereas week no.1 wil groups compete on a vi discussions of selected In addition, the choice of well as the writing proce Learning goals and qual > Knowledge of fun > Ability to apply str	, Strategic Management Risk Management, Orga discussed I be dedicated to playing irtual market), week no.2 readings (textbook chap of an individual paper top ess for scientific papers v lifications	& Planning, Human Res anization Structures & of a computer-based busi and 3 a taught in a "sel oters, articles or scientifi bic, the carving out of pro will be discussed during	source Management & ther selected topics (e.g. mess game (where differen minar format" i.e. via the c publications). oper research questions as class
Systemic Management Leadership, Marketing, business ethics) will be Teaching form: Whereas week no.1 wil groups compete on a vi discussions of selected in addition, the choice of well as the writing proce Learning goals and qual South Knowledge of fun South Ability to apply str South Additional genera Recommended reading	, Strategic Management Risk Management, Orga discussed I be dedicated to playing irtual market), week no.2 readings (textbook chap of an individual paper top ess for scientific papers v lifications damental economic concep rategic management conce I skills: rhetoric, discussion	& Planning, Human Res anization Structures & of a computer-based busi and 3 a taught in a "sel oters, articles or scientifi bic, the carving out of pro will be discussed during	source Management & ther selected topics (e.g. mess game (where differen minar format" i.e. via the c publications). oper research questions as class
Systemic Management Leadership, Marketing, business ethics) will be Teaching form: Whereas week no.1 wil groups compete on a vi discussions of selected In addition, the choice of well as the writing proce Learning goals and qual > Knowledge of fun > Ability to apply str > Additional genera Recommended reading There are several introduc • e.g. for managem Learning (UK). • e.g. for economic Addison-Wesley	, Strategic Management Risk Management, Orga discussed I be dedicated to playing irtual market), week no.2 readings (textbook chap of an individual paper top ess for scientific papers v lifications damental economic concep rategic management conce I skills: rhetoric, discussion ctions to economy: nent: Cole, G. a. 2003. Man	& Planning, Human Res anization Structures & of a computer-based busi and 3 a taught in a "se oters, articles or scientifi- bic, the carving out of pro- will be discussed during opts as a basis for the appli- opts and presentation skills, co- hagement. Theory and Pra- and Matthews, K. 2003 Eco-	source Management & ther selected topics (e.g. mess game (where different minar format" i.e. via the c publications). oper research questions as class cation of business instrument ompetence for team work ctice. 6th edition. Cengage onomics, 5th Edition, Harlow:
Systemic Management Leadership, Marketing, business ethics) will be Teaching form: Whereas week no.1 wil groups compete on a vi discussions of selected In addition, the choice of well as the writing proce Learning goals and qual > Knowledge of fun > Ability to apply str > Additional genera Recommended reading There are several introduc • e.g. for managem Learning (UK). • e.g. for economic Addison-Wesley	, Strategic Management Risk Management, Orga discussed I be dedicated to playing irtual market), week no.2 readings (textbook chap of an individual paper top ess for scientific papers v lifications damental economic concep rategic management conce I skills: rhetoric, discussion ctions to economy: nent: Cole, G. a. 2003. Man s: Parkin, M., Powell, M. a	& Planning, Human Res anization Structures & of a computer-based busi and 3 a taught in a "se oters, articles or scientifi- bic, the carving out of pro- will be discussed during opts as a basis for the appli- opts and presentation skills, co- hagement. Theory and Pra- and Matthews, K. 2003 Eco-	source Management & ther selected topics (e.g. mess game (where differen minar format" i.e. via the c publications). oper research questions as class cation of business instrument ompetence for team work ctice. 6th edition. Cengage onomics, 5th Edition, Harlow:

Course				
M.Sc. Renewable Ener	rgy Engineering and Man	agement		
Availability to other cou	irses		Instruction Language	
			English	
Module No.	Module name		Semester/return	
93320	93320 Research Skills and Ethics for			
	Sustainable Develo	pment		
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants	
5 ECTS-P (150/60h)	Scientific Framework for REM		max. 75	
Teaching form	Examination form	Start date	Location	
Lectures, Exercises, Seminar, presentations	Written assignment: Paper summary, research proposal, ethics case study (pass or fail)	05.06.2023	t.b.a	
Module coordinator: Ju	n-Prof. Cathrin Zengerling,	e-mail: <u>cathrin.zengerling</u>	@enrlaw.uni-freiburg.de	
Additional teaching sta	ff: Philipp Thapa, Johan Ve	lez		
Syllabus				
introduction of sciences course. In the first part including research stra Students will get familia	I course of the compulsor s and scientific methodol of the module, students tegy and cycle, literature ar with scientific citation a er of medium complexity v	ogy. There are no prere will be familiarized with review but also scientif and bibliography. A kno	equisites required for this the process of research ic misconducts and fraud. wledge synthesis of a	
In the second part of th	e module. students will le	earn the main goals and	d methods of qualitative ar	

In the second part of the module, students will learn the main goals and methods of qualitative and quantitative research process. This part includes details about research design, data collection and data analysis, as well as preparation for scientific communication and scientific publications, such as writing papers, presenting posters, etc. An own research proposal will be written and graded.

The ethics part of the module adds a normative and utopian perspective to the idea of sociometabolic transitions. The focal double question is: "What future do we want, and why?" Students develop awareness for the diversity both of possible future visions and of the reasons and criteria that can be used to support or criticise their pursuance. They learn to distinguish between factual claims and normative appeals and to analyse their intertwinement in concepts such as development, economic growth, sustainability, biodiversity, or nature. They practise making normative arguments of their own and questioning those of others. Together, we discuss the main conceptions of sustainability and ethics and offer an introduction into environmental ethics, including the question whether we owe respect to (some) non-human beings. Students learn to consider "social technologies", including ethics and lifestyles, as potential tools for sustainable development in addition to engineering solutions. (Main responsibility: Philipp Thapa)

Learning goals and qualifications

- Students will be able to understand the main goals and common methods of qualitative and quantitative research (including empirical methods and statistics)
- Students will be able to develop meaningful research questions (hypothesis) and to design studies to evaluate their hypothesis (including research design, data collection and analysis)

- Students will be able to communicate their research results among scientific community via scientific texts
- Scientific synthesis and writing skills, overview of research skills and application of research skills for development of research proposal (knowledge synthesis and research gap, method choice and description, description of expected results and discussion items)
- Detailed knowledge about environmental ethics
- Awareness of the ethical aspects of sustainable development
- Basic knowledge of the main ethical approaches and normative argumentation skills

Recommended reading

Curd, M. and Cover, J. A (1998): Philosophy of science - the central issue. W. W. Norton & Company, New York

McCaskill, M. K. (1998): Grammar, punctuation and capitalization: A handbook for technical writers and editors (NASA SP-7084). Langley Research Centre, Hampton, Virginia

Popper, Karl (2004): The logic of scientific discovery. London: Routledge-Classic

Strauss, A. and Corbin, J. (1990): Basics of qualitative research: Grounded theory procedures and techniques. Sage Publications

Ott, Konrad: Essential components of Future Ethics. In: Döring, Ralph / Rühs, Michael (eds.): Ökonomische Rationalität und praktische Vernunft. P. 83-108.

Note: All reading is provided as pdf on the University's online learning platform ILIAS. **Course prerequisites**

None

Availability to other courses			Instruction Language	
				English
Module	Nodule No. Module name		Semester/return	
	93935	Elective Hydropowe	er	2 nd Sem. / annual
	ad/presence -P (150/60h)	Prerequisite module(s) "Natural Resources and Conversion Technologies"	Follow-up module(s) 	No. of participants Max. 35
Teachin	ng form	Examination form	Start date	Location
		Exercises and project work (short essay)	26.06.2023	t.b.a.
Module	coordinators: F	Prof. Dr. Markus Weiler		
Additior	nal teaching sta	ff: Dr. Andreas Hänsler		
• E 	climates around Example calcula hydrological rive Detailed look at t	the world using climate and tions showing the assessme r data. the design and cost of differ	hydrologic data from diffe ent of the potential of wate ent types of water power	erent locations. er power generation from basic projects.
• E + • [• [• (• (• (• (• (• (• (• (• (• (climates around Example calcula hydrological river Detailed look at to Detailed look at to from generating viable hydropower Consideration ar with hydropower Several field day Switzerland. Software used w	the world using climate and tions showing the assessme r data. the design and cost of differ the economic balance of hyd and selling electricity). Pote er projects using real life exi- nd mitigation strategies of so projects. trips to different types of hy	hydrologic data from diffe ent of the potential of water dropower projects (investi- ntial, probability, and risk amples and theoretical ex ocial, environmental, and ydropower operations arou	erent locations. er power generation from basic projects. ment and running cost vs. retu of designing economically cercises. economic problems associated
• E + • [• [• [• [• [• [• [• [climates around Example calcula hydrological river Detailed look at to Detailed look at to from generating viable hydropower Consideration ar with hydropower Several field day Switzerland. Software used w	the world using climate and tions showing the assessme r data. the design and cost of differ the economic balance of hydr and selling electricity). Pote er projects using real life exit and mitigation strategies of so projects. trips to different types of hy ill include simple hydrologic and/or MATLAB	hydrologic data from diffe ent of the potential of water dropower projects (investi- ntial, probability, and risk amples and theoretical ex ocial, environmental, and ydropower operations arou	erent locations. er power generation from basic projects. ment and running cost vs. retu of designing economically cercises. economic problems associated und southern Germany and
• [• [• [• [• [• (• (• (• (• (• (• (• (• (• (climates around Example calcula hydrological river Detailed look at to Detailed look at to from generating viable hydropower Consideration ar with hydropower Several field day Switzerland. Software used w like EXCEL / R / g goals and qua Improved unders parts of the work Improved unders types. Better awarenes disadvantages a	the world using climate and tions showing the assessme r data. the design and cost of differ the economic balance of hyd and selling electricity). Pote er projects using real life exit ad mitigation strategies of so projects. trips to different types of hy ill include simple hydrologic and/or MATLAB alifications standing of the underlying hy d. standing of hydropower plan s of the economic advantag nd dangers of planning and ding of negative impacts of	hydrologic data from diffe ent of the potential of wate dropower projects (investi- ntial, probability, and risk amples and theoretical ex- pocial, environmental, and o vdropower operations arou models like "HBV", and s wdrological processes lead its and their usefulness fo es and possibilities as we building hydropower plan	er power generation from basic projects. ment and running cost vs. retur of designing economically cercises. economic problems associated und southern Germany and preadsheet/statistic software ding to river runoff in different r different purposes and river Il as the potential
• [• [• [• [• [•] •] •] •] •] •] •] •] •] •]	climates around Example calcula hydrological river Detailed look at to Detailed look at to from generating viable hydropower Consideration ar with hydropower Several field day Switzerland. Software used w like EXCEL / R / g goals and qua Improved unders parts of the work Improved unders types. Better awarenes disadvantages a Better understan	the world using climate and tions showing the assessme r data. the design and cost of differ the economic balance of hydrand and selling electricity). Pote er projects using real life exi- and mitigation strategies of so projects. trips to different types of hy rill include simple hydrologic and/or MATLAB alifications standing of the underlying hy d. standing of hydropower plan s of the economic advantag nd dangers of planning and ding of negative impacts of these effects.	hydrologic data from diffe ent of the potential of wate dropower projects (investi- ntial, probability, and risk amples and theoretical ex- pocial, environmental, and o vdropower operations arou models like "HBV", and s wdrological processes lead its and their usefulness fo es and possibilities as we building hydropower plan	erent locations. er power generation from basic projects. ment and running cost vs. retu of designing economically cercises. economic problems associated und southern Germany and preadsheet/statistic software ding to river runoff in different r different purposes and river Il as the potential ts.

Course

M.Sc. Renewable Energ	y Engineering and Ma	nagement	
Availability to other cours	ses		Instruction Language
			English
Module No.	Module name		Semester/return
97014	Solar Thermal Er	3 rd Sem. / annual	
Workload/presence	Prerequisite	Follow-up module(s)	No. of participants
5 ECTS (150 h/60 h)	module(s) Natural Resources and Conversion Technologies	Solar Thermal Energy 2	Max. 25
Teaching form	Examination form	Start date	Location
Lectures, Exercises, Excursion (depending on students numbers)	Written Exam	26.06.2023	University of Freiburg Fraunhofer ISE
Module coordinator: Prof.	Dr. Werner Platzer	1	1

Additional teaching staff: Dr. Korbinian Kramer, Dr. Manuel Lämmle,

Syllabus

In this module the students will learn the basic knowledge about low and high-temperature solar thermal energy applications and combinations with energy efficiency measures in buildings. The module includes basic theory and technology know –how as well as all different STE applications:

- Market overview
- Solar resources and technical availability
- Demand profiles for domestic hot water, solar assisted heating, preheating of air; industrial heat

- Active and passive solar collector concepts and components (flat-plate, vacuum-tube, concentrating collectors, windows, etc.)

- Collector design, materials and technology

- Performance parameterisation and technical characterisation e.g. efficiency determination, IAM, function test, accelerated aging, quality assurance

- Thermal storage concepts (sensible short term and seasonal storage)

- System design concepts for small and large solar thermal systems (performance and economics -

Integration of solar thermal heat into industrial processes

- Concentrated solar thermal power (CSP): Solar field concepts, system aspects
- Solar cooling and desalination projects
- Project planning, financing and implementation for CSP and solar process heat

- Economical assessment and financing options

Learning goals and qualifications

In this course, students will learn about the use of solar thermal systems, components used and specifications with respect to many applications from heating water, heating of buildings to industrial process heat and solar thermal electricity. They will learn temperature and efficiency limitations, how to improve thermal systems by specific material design and selection. System analysis with respect to storage concepts, hydraulic flow regimes and flow control will be intensified. Students will be able afterwards to discuss designs for solar systems with normal and concentrating collectors, perform simulations and assess the performance and economics of projects. The students will understand the interrelations between system components know different system concepts and calculate the solar gains of different systems. They can understand the role of low and high temperature solar thermal energy conversion in the energy system.

Recommended reading

Duffie, J. A., Beckman, W., Blair, N., Solar Engineering of Thermal Processes, Photovoltaics and Wind, 5th Edition, Wiley, 2020

Lovegrove, K., Stein, W. (Eds.): Concentrating Solar Power Technology, 2nd Edition, Woodhead/Elsevier, 2020

Cabeza, L. (Ed.), Advances in Thermal Energy Storage Systems, 2nd Edition, Woodhead/Elsevier, 2020

Course prerequisites

"Natural Resources and Conversion Technologies - Solar Thermal Energy"

- Basic knowledge of solar thermal systems and solar radiation calculation
- Knowledge of heat transfer mechanisms (radiation, convection)
- Knowledge of thermodynamic cycles (heat pumps, heat engines)

Course			
M.Sc. Renewable Energy E	Engineering and Management		
	ses This module is offered as e Geographie des Globalen Wand		Instruction Language English
Module No.	Module name		Semester/return
93936	Global Sustainabilit in Local Contexts	3 rd Sem. / annual	
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants
5 ECTS-P (150h/60h)			Max. 25
Teaching form	Examination form	Examination form Start date	
Lectures, group work, presentations	Essay (indiv., 2000 words), case study (group, 3000 w)ords, present. (group, 15 min.)	Tba.	
Module coordinator: Jun	Prof. Dr. Cathrin Zengerling,	Dr. Benedikt Schmid	
Additional teaching staff			

Additional teaching staff

Guests tba

Syllabus

Cities consume about 75% of global energy and material flows and are home to more than half of the global population - with a rising tendency. They are an increasingly visible actor in emerging polycentric environmental governance, engage in international legal regimes such as the Paris Agreement and transnational municipal networks (TMNs). Infrastructures and lifestyles in local systems are crucial for people's well-being within planetary boundaries. Many processes of sustainability transformations around energy, mobility, food, housing, and consumer goods are rooted in local systems. They offer room for experiments and niches and allow for first steps in diffusion and upscaling. Local governments can be closer to people and more responsive to specific local needs and conditions than higher levels of government. Local economies play a key role in value creation and capture.

In this module, students learn about cities and municipalities as actors in an emerging system of polycentric environmental governance. They gain knowledge on the role of local governments within the Paris Agreement, TMNs as well as national state hierarchies in different legal systems and the respective local scope of action. We explore different modes of governing processes of transformation across different sectors (energy, mobility, food, housing and others) as well as scales (neighbourhood, city, translocal) in international case studies in the global north and south. The key forms of local decision-making (including referendums), formal as well as informal steering instruments including land use plans, urban development contracts and climate action plans are introduced. Students also get insights into the relationship and forms of cooperation between urban and (surrounding) rural areas in the context of the (energy) transition. With regard to local and community economies, students learn about (re)municipalisation, eco-social enterprises and community initiatives. We discuss alternative forms of ownership such as cooperatives and sharing schemes, in particular in the context of alternative economies and degrowth.

The course is taught in an interactive manner. We will kick off our joint work with an explorative zero carbon walk in a Freiburg neighbourhood. Throughout the course, we present and discuss international case studies and students get the chance to deepen their knowledge in their main fields of interest. The course also encompasses an excursion to the new low carbon urban development project Dietenbach and discussions with representatives of the urban planning department.

Learning goals and qualifications

In this module students:

- develop a critical understanding of contemporary processes of urban sustainability transformations with a main focus on the sectors of energy, mobility, housing and food,
- understand the role of cities in emerging polycentric environmental governance, varying local scopes of action and key formal and informal steering instruments of urban governance
- discuss and reflect upon the role of law and planning in urban sustainability transformations,
- analyse academic publications, legal and policy documents and other planning-related materials,
- apply their knowledge to case studies of contemporary urban transformation processes in their field of interest
- compare, contrast and transfer their knowledge to other cases.

Classification of cognitive skills following Anderson & Bloom (2001):

1 = *Remember*: retrieving relevant knowledge from long term memory; 2 = *Understand*: determining the meaning of instructional messages (interpreting, exemplifying, summarizing ...); 3 = *Apply*: carrying out or using a procedure in a given situation; 4 = *Analyze*: breaking material into its constituent parts and detecting how the parts relate to one another and to an overall structure or purpose; 5 = *Evaluate*: making judgment based on criteria and standards; 6 = *Create*: putting elements together to form a novel, coherent whole or make an original product.

Recommended reading

Kraas, F., Leggewie, C., Lemke, P., Matthies, E., Messner, D., Nakicenovic, N., ... & Butsch, C. (2016). *Humanity on the move: Unlocking the transformative power of cities*. WBGU-German Advisory Council on Global Change.

Reading material will be provided during the course via the e-learning platform ILIAS.

Course prerequisites

Module number	Module name		
94298	Elective: Leadership and Social Entrepreneurship		
Course of study		Type of course	Semester / Rotation
MSc Environmental Governance		Elective module	2 nd / Summer Term
Teaching methods		Prerequisites for attendance	Language
lectures, group work		None	English
Type of examination (Final Grade Composition)			ECTS-LP (Workload)
PL Group and individual presentations (20%)			5 (150h, of this 60 contact hrs.)
PL Written group essay (40%), ca. 5000 words			
PL Written individual essay (40%), ca. 2000 words			
Module coordinator			SWS
Prof. Dr. H. Schanz, e-mail: <u>heiner.schanz@envgov.uni-freiburg.de</u>		4	
· ·			

Additional teachers involved

Barbara Börner (social entrepreneurship and sustainability consultant); Björn Adam (business law, systemic management and coaching)

Syllabus

While environmental governance is often associated with governments, it also takes into account the role of other stakeholders that have an impact on the environment, including the private sector, NGOs and civil society. This module will deal with two prominent approaches in the field of environmental governance: (i) (environmental) leadership, particularly beyond governments, and (ii) social entrepreneurship.

(i) Recent research shows that *environmental leadership* is often viewed as an "unequivocal good" and important for effective environmental governance; however, these assumptions are rarely critically discussed and empirically tested (Evans et al. 2015). (Environmental) leadership remains a broad, multi-faceted and contested concept. We will review theories of leadership in order to understand what it takes to be a leader, what leaders do, where leaders come from, how leaders interact with their social environment and their followers, how leadership develops, and how specifically leadership shapes environmental and sustainability governance. The students will apply various approaches to leadership to specific case studies in order to explore the role of leaders and leadership in concrete organizations and contexts.

(ii) The concept of *Social Entrepreneurship* addresses social and ecological challenges that are unmet by private markets or governments; it is motivated primarily by generating earned income to serve a social mission, or by the role of innovation in creating social change. In this course, the key tenets of social entrepreneurship are discussed and exemplified by specific "business cases." In the practical part of the course, students will evaluate real-world start-up social enterprises via small "consultancy projects." Students will conduct business case studies and present their evaluations to the class.

The module also includes a one-day study trip to RegionalWert A.G., a social enterprise and a citizen shareholder society that supports sustainable regional agriculture and food economy in the Freiburg area by linking citizen investors and sustainable enterprises.

Learning goals and qualifications

In this module students learn to:

 understand and critically assess different approaches to (environmental) leadership and social entrepreneurship (1, 2);

- evaluate the role of leaders and leadership in environmental governance processes (5);
- compare the perspectives, strengths and weaknesses of different approaches (4);
- apply theoretical approaches to current issues and specific cases of leadership and social entrepreneurship (3); and
- evaluate how theoretical approaches to social entrepreneurship work in practice (5).

Classification of cognitive skills following Bloom (1956):

1 = *Knowledge*: recalling facts, terms, basic concepts and answers; 2 = *Comprehension*: understanding something; 3 = *Application*: using a general concept to solve problems in a particular situation; 4 = *Analysis*: breaking something down into its parts; 5 = *Synthesis*: creating something new by putting parts of different ideas together to make a whole; 6 = *Evaluation*: judging the value of material or methods.

Core readings

A list of relevant texts will be made available at the start of the course; obligatory readings (and part of the voluntary readings) will be made available online in electronic form. The following are some preliminary readings.

Zeyen, A., M. Beckmann and R. Akhavan. 2013. Social Entrepreneurship Business Models: Managing Innovation for Social and Economic Value Creation. In: Managementperspektiven für die Zivilgesellschaft des 21. Jahrhunderts. Management als Liberal Art. Wiesbaden: Springer Gabler.

Mair, J. 2010. Social Entrepreneurship: Taking Stock and Looking Ahead. In: A. Fayolle and H.

Matlay, eds. Handbook of Research on Social Entrepreneurship, Edward Elgar: Cheltenham, Chapter 2.

<u>Stephan</u>, U. et. al. 2016. Organizations Driving Positive Social Change. A Review and an Integrative Framework of Change Processes. Journal of Management 42 (5), 1250–1281.

Evans, Louisa S. et al. 2015. Understanding leadership in the environmental sciences. Ecology and Society 20(1): Art. 50

Gallagher, Deborah R., ed. 2012. Environmental leadership. Los Angeles: Sage

Course			
Course			
M.Sc. Renewable Energy Engineering and Management			
Availability to other cour	Instruction Language		
	English		
Module No. Module name			Semester/return
93931	Elective Bioenergy		2 nd Sem. / annual
		1	
Workload/presence	Prerequisite module(s)	Follow-up module(s)	No. of participants
5 ECTS-P (150 / 60h)	Natural Resources and Conversion Technologies	-	Max. 40
Teaching form	Examination form	Start date	Location
Online Lectures, group discussions	Written Report and Presentation	17.07.2023	T.b.a.
Module coordinator: Dr. Sebastian Paczkowski			
Additional teaching staff:			
Syllabus			

The module will introduce the most relevant energy conversion technologies related to municipal and industrial waste products, non-woody and woody biomass. In addition, aspects of production/abundance, harvesting, logistic, and storage of non-woody and woody biomass, as well as municipal and industrial waste will be addressed.

Chemical engineering aspects of conversion processes such as:

- torrefaction, pyrolysis
- gasification, BtL
- combustion
- biogas
- biodiesel
- bioethanol

are given in the frame of the module.

Advantages and disadvantages of these processes will be discussed in terms of biomass resources, production technology, product characteristics, and emissions.

A group work that comprises a management and technology concept for a selected place/technology will allow the students to apply their knowledge and to investigate their project's feasibility.

Learning goals and qualifications

The students will learn fundamental concepts of conversion processes for municipal and industrial waste, nonwoody and woody biomass. They will also get a basic understanding of related technologies, e.g. harvesting, transport and storage. They will be able to assess different technologies with respect to strengths and weaknesses.

Furthermore, the students will learn to assess the potentials of waste / biomass production and logistics.

The students will practice how to apply essential information in a management process and to present the results in written and oral form.

Recommended reading

Specific literature will be recommended in the module.

Course prerequisites

The module "Natural Resources and Conversion Technologies" is a prerequisite.

rgy Engineering and Man	agement		
Availability to other courses			
Module name	Semester/return		
Elective Wind energy		2 nd Sem. / annual	
Prerequisite module(s)	Follow-up module(s)	No. of participants	
Elective I		Max. 30	
Examination form	Start date	Locations	
Poster presentation	17.07.2023	T.b.a.	
	Module name Elective Wind energ Prerequisite module(s) Elective I Examination form	Module name Elective Wind energy Prerequisite module(s) Follow-up module(s) Elective I Examination form Start date	

Module coordinator: Prof. Dr. Dirk Schindler (<u>dirk.schindler@meteo.uni-freiburg.de</u>)

Additional teaching staff: Balázs Garamszegi

Syllabus

The wind energy module provides students with a deep understanding of the meteorological, geographical and technical wind energy potential with supplementary information on the economic and implementation potential. The module structure is basically project-oriented including lectures, GIS, and modeling exercises.

In the module the following topics will be discussed:

- Basics of wind resource characteristics at different spatiotemporal scales
- Wind speed and wind direction statistics including distribution fitting
- Influence of surface characteristics on the wind resource
- Aspects of power curves and repowering
- Economics of wind energy
- Integration of wind energy into the electricity grid
- CO₂ emission mitigation potential of wind energy, wind-to-gas potential

Learning goals and qualifications

- Understanding of wind characteristics and their state-of-the-art statistical description.
- Understanding of how the wind resource can best be used by existing technology.
- Students will be enabled to develop wind turbine siting strategies for maximizing wind energy yield..

Recommended reading

Grau, L., Jung, C., Schindler, D., 2017: On the Annual Cycle of Meteorological and Geographical Potential of Wind Energy: A Case Study from Southwest Germany. Sustainability 9, 1169.

Jung, C., Schindler, D., Laible, J., 2018: National and global wind resource assessment under six wind turbine installation scenarios. Energy Conversion and Management 156, 403-415.

Manwell, J.F., McGowan J.G., Rogers, A.L., 2009: Wind energy explained: theory, design and application. Chichester, Wiley.

Course prerequisites

Basic knowledge of wind energy.

Modul / Module

Energy in Buildings: energy demand and building physics

Nummer: Number	11LE68MO-4112		
Modulverantwortlicher: <i>Responsible person</i>	Prof. Dr. HM. <u>Henning</u> , Dr. S. Hess, B. Rodenbücher, R. Eberle	Einrichtung: Organisational unit	INATECH
Modultyp: Module Type	Elective Module	Moduldauer Module duration	1 term
Zugehörige Lehrveranstaltungen: Connected events	lecture and practical exercise	Sprache: Language	English
Empfohlene Voraussetzungen: Recommended preconditions	Energy Storage, Solar Energy		
Zwingende Voraussetzungen: Mandatory requirements	none		

Empfohlenes Fachsemester:: Recommended term of study	2	ECTS-Punkte: ECTS credits	6
SWS: Semester week hours	4	Angebotsfrequenz: Regular cycle	Summer term
Arbeitsaufwand: Workload	180 hours (total incl. preparation and lecture attendance)		

Lernziele / Learning objectives

The students know the influencing factors on the energy demand of buildings. They know about the requirements and prerequisites for low energy and passive houses. They are familiar with methods for setting up energy balances for buildings and the relevant technical indoor equipment. Students are able to judge under which circumstances zeroenergy or plus-energy buildings (with respect to the annual primary energy balance) are attainable. They know the requirements and criteria for indoor comfort in buildings and they are able to estimate the influence of different renovation and retrofit measures on the energy demand and indoor comfort. They know use cases and limits of different heat transfer systems for heating and cooling of indoor environments and are familiar with low exergy concepts for building energy systems. Inhalte Vorlesung / Content of the lecture

- Selected chapters of building physics regarding energy demand of buildings for heating and cooling
- Indoor comfort in buildings
- Ventilation demand and ventilation concepts
- The passive house concept
- Passive use of solar energy in buildings; physics of transparent building components
- Passive systems / concepts for cooling of buildings
- Exergetic evaluation of building systems
- Heat transfer systems to rooms for heating and cooling
- Efficient energy conversion chains, "low-ex" systems

Inhalte Praktische Übung / Content of the practical exercise

The lecture will be accompanied by a weekly exercise to deepen the understanding of the lecture's content and to discuss further details. The practical exercise includes calculations, practical experiments (e.g. on thermal insulation and optical properties), system simulations (with polysun) and/or case studies.

Zu erbringende Prüfungsleistung / Course-based assessment

Written supervised exam

Zu erbringende Studienleistung / Coursework

Attendance during the practical exercise is required (minimum 85 % attendance). Work on (weekly) exercise sheet and written documentation.

Literatur / Literature

Energy Performance of Buildings - Energy Efficiency and Built Environment in Temperate Climates. Editors: Boemi, Sofia-Natalia, Irulegi, Olatz, Santamouris, Mattheos (Eds.). Springer. ISBN 978-3-319-20831-2

Course				
M.Sc. Renewable Energ	gy Engineering and Man	agement		
Availability to other cour	Instruction Language			
			English	
Module No.	Module name		Semester/return	
6900	Internship (Praktikum)		2 nd - 3 rd Sem. / annual	
Workload/presence	Prerequisite module(s) Follow-up module(s)		No. of participants	
10 ECTS-P (300 h)			max. 75	
Teaching form	Examination form	Start date	Location	
Practical work	Written report	07.08.2023	t.b.a.	
Module coordinators: Pr	of. Dr. Stefan Pauliuk (<u>stef</u>	an.pauliuk@indecol.uni-fre	eiburg.de)	
Additional teaching staff	F			
Academic experts of the re	espective internship institut	tion		
 departments of the ZEE and his partners. Possible internship providers include: Renewable energy and power supply companies Planning and Engineering companies Consultancy and information services (energy agencies, technology transfer institutions) and public relation Science and research dealing with renewable energies Financing and Investment companies specialising in financing environmental projects, as well as investment and development banks 				
Learning goals and qual	ifications			
The internship provides students with a first insight into potential employment sectors; in all sectors this is primarily achieved by practical work. Apart from gaining an overview of the subject, students should experience typical work processes and the human interactions in an organization. The assigned work gives students an idea of the daily work procedure at their workplace ('everyday life experiences'). Additionally, students become familiar with the structures within the institution, as well as the interconnections with external systems. Furthermore, the expert knowledge gained in the course of the studies is intensified and to a certain degree, applied during the practical training.				
Recommended reading				
None.				
Course prerequisites				
None.				